This study employs advanced electrochemical and surface characterization techniques to investigate the impact of electrochemical hydrogen charging on the corrosion behavior and surface film of the Ti-6Al-4V alloy.The ...This study employs advanced electrochemical and surface characterization techniques to investigate the impact of electrochemical hydrogen charging on the corrosion behavior and surface film of the Ti-6Al-4V alloy.The findings revealed the formation ofγ-TiH andδ-TiH_(2) hydrides in the alloy after hydrogen charging.Prolonging hydrogen charging resulted in more significant degradation of the alloy microstructure,leading to deteriorated protectiveness of the surface film.This trend was further confirmed by the electrochemical measurements,which showed that the corrosion resistance of the alloy progressively worsened as the hydrogen charging time was increased.Consequently,this work provides valuable insights into the mechanisms underlying the corrosion of Ti-6Al-4V alloy under hydrogen charging conditions.展开更多
The effect of microstructure and passive film on the corrosion resistance of 2507 super duplex stainless steel(SDSS)in simulated marine environment was investigated by electrochemical measurements,periodic wet–dry cy...The effect of microstructure and passive film on the corrosion resistance of 2507 super duplex stainless steel(SDSS)in simulated marine environment was investigated by electrochemical measurements,periodic wet–dry cyclic corrosion test,scanning Kelvin probe force microscopy,atomic force microscopy,and X-ray photoelectron spectrometry.The results show that the occupation ratio ofγphase increases with the decrease in cooling rate,whereas the content ofαphase reduces gradually.In addition,theσprecipitated phase only emerges in the annealed steel.The pitting sensitivity and corrosion rate of 2507 SDSS reduce first and then increase as the cooling rate decreases.Theσprecipitated phase drastically reduces the protective ability of the passive film and facilitates micro-galvanic corrosion of the annealed steel.For various microstructures,the pits are preferentially distributed within theσandγphases.The corrosion resistance of 2507 SDSS prepared by different cooling methods is closely related to the microstructure and structure(stability and homogeneity)of the passive film.Normalized steel shows an optimal corrosion resistance,followed by the quenched and annealed steels.展开更多
The properties of the passive film formed on 2205 stainless steel in acetic acid at high temperature that contained chloride ions were studied by atomic absorption spectrometry (AAS), X-ray photoelectron spectrosco...The properties of the passive film formed on 2205 stainless steel in acetic acid at high temperature that contained chloride ions were studied by atomic absorption spectrometry (AAS), X-ray photoelectron spectroscopy (XPS), and electrochemical polarization measurements. AAS results show that molybdenum is enriched on the surface as the passive film is dissolved. This enrichment decreases the corrosion resistance because it hinders chloride adsorption and Fe ion dissolution, and acts as a local pH buffer because it consumes protons. The dissolution ratio of Fe/Cr is approximately 10 during the active dissolution of the passive film. XPS results indicate that when the potential is in the passivation region, Cr comprises about 50% of the metal cations in the near-surface region of the passive film and is the main metal constituent in this region. When the polarization potential is much greater than the transpassivation potential, the Mo content accounts for approximately 45% of the metal cations in the nearurface region; Fe and Ni have no obvious influence on the formation, dissolution, or puncture of the passive film.展开更多
The electrochemical behavior of metallic passive film on rebar in concrete is characterized by its semiconductive nature. The charge distribution at the interface between a semiconductor and an electrolyte is often de...The electrochemical behavior of metallic passive film on rebar in concrete is characterized by its semiconductive nature. The charge distribution at the interface between a semiconductor and an electrolyte is often determined by measuring the capacitance of the space-charge layer (Csc) as a function of the electrode potential (E). When the space charge-layer serves as the depletion layer, the relation of Csc^-2 vs E resembles a Mott-Schottky plot (M-S plot). The semiconductive properties of the passive film on rebar in concrete were analyzed with M-S plots to study the effect of chloride ions and mineral admixtures on rebar passive films. Some rebar electrodes were immersed in simulated concrete pore solutions, while others were embedded in concrete with/without mineral admixtures. In saturated Ca(OH), solutions, the relation of Csc^-2-E of rebar electrodes shows linear MottSchottky relationship indicating that the passive film on rebar is a highly disordered n-type semiconductor, with donor density (ND) in the order of 10^26m^-3. After adding chloride ions (Cl wt%〈0.2%) in system solutions, the M-S plot slopes significantly decreased and ND increased, suggesting that chloride ion will cause passive film corrosion and breakdown. The M-S plots of the passive film on rebar electrodes embedded in concrete were similar to those immersed in simulated system solution. However, ND of those in concrete with mineral admixtures tended to be a little smaller, indicating that introducing proper quantity admixtures into concrete could make the rebar passive film have a thicker space-charge layer and therefore a thicker passive film layer.展开更多
This study aims to systematically analyze the key parameters of the reflow process that influence the uniformity of the chromium passivation film coated on tinplate. The distribution characteristics of the chromium pa...This study aims to systematically analyze the key parameters of the reflow process that influence the uniformity of the chromium passivation film coated on tinplate. The distribution characteristics of the chromium passivation film coated on the tinplate surface under different treatment conditions were systematically characterized using the scanning Kelvin probe technique, X-ray photoelectron spectroscopy, and X-ray diffraction. Results indicate that the use of flux reduces the porosity of tin coating, thereby favoring the uniform growth of the passivation film. Furthermore, an increase in the reflow power and quenching temperature facilitates the homogeneous distribution of the passivation film on the tinplate surface,particularly when treated with electrolytic cathodic sodium dichromate.展开更多
Passivity degradation of 304 stainless steel(SS) in simulated alkaline water chemistries at 300℃ was investigated using polarization curve, scanning electron microscope, time-of-flight secondary ion mass spectrometry...Passivity degradation of 304 stainless steel(SS) in simulated alkaline water chemistries at 300℃ was investigated using polarization curve, scanning electron microscope, time-of-flight secondary ion mass spectrometry(SIMS) and X-ray photoelectron spectroscopy(XPS). Experimental results indicated that 304,SS was selfpassive in the test solution and the thickness of passive film was about 500 nm. Hydroxide was enriched in the outer layer whereas oxide was enriched in the inner layer. Sulfur in thiosulfate could be reduced into lower valence of sulfur and enter the passive film so that the composition of passive film was modified by sulfur. Fe and Cr were enriched in the passive film whereas Ni was depleted in the passive film.展开更多
The semi-conductive performances of hot growth film on 316L stainless steel were studied by means of electrochemical impedance spectroscopy(EIS) and Mott-Schottky analysis.The chemical compositions of the hot growth...The semi-conductive performances of hot growth film on 316L stainless steel were studied by means of electrochemical impedance spectroscopy(EIS) and Mott-Schottky analysis.The chemical compositions of the hot growth films were detected by X-ray photoelectron spectroscopy(XPS).The results show that the transfer resistance and film resistance increase with increasing temperature to 400℃,then they decrease sharply with further continuously increasing temperature.Formation time plays an important role in determining the electron properties of the hot growth film,when formation time reaches to 1 d,the transfer resistance and film resistance reach to the maximum value.Hot growth film has better anticorrosion behaviour in bicarbonate/carbonate solution containing chloride ions or sulfide ions.Mott-Schottky analysis reveals that hot growth film has n-p type semi-conductive property.XPS results show that the hot growth film is mainly composed of the inner chromium oxide and the outer iron oxide.展开更多
In the present study, the passive film formed on the G3 nickel-base alloy tubing under corrosive conditions including H2S ,CO2 ,and Cl-at 130 ℃ and 205 ℃ is studied with X-ray photoelectron spectroscopy(XPS). The ...In the present study, the passive film formed on the G3 nickel-base alloy tubing under corrosive conditions including H2S ,CO2 ,and Cl-at 130 ℃ and 205 ℃ is studied with X-ray photoelectron spectroscopy(XPS). The results reveal that the passive film formed at 205℃ consists of Cr, Ni, Fe, S and O elements and is over 470 nm in thickness. The passive film can be divided into three layers, the outer-layer is composed of NiS2 and Cr2 S3 , the intermediate-layer of Cr(OH) 3, Ni (OH) 2, NiS2, Cr2 $3 and a small quantity of NiO and Cr2 O3, and the inner-layer of NiO, Cr2 O3, and alloy elements. Due to the invasion of S2 - into the passive film and the decrease of the content of chromium oxide in the film, the corrosion resistance of the G3 alloy in the sour environment at 205 ℃ is weakened.展开更多
The influence of 40 kHz ultrasound radiation on the passivation behavior of zinc in 7 M KOH is presented. The results of potentiodynamic and potentiostatic measurements combined with the current oscillation caused by ...The influence of 40 kHz ultrasound radiation on the passivation behavior of zinc in 7 M KOH is presented. The results of potentiodynamic and potentiostatic measurements combined with the current oscillation caused by the irradiation were examined to explain the mechanism and the sequence of formation of the oxide films during passivation. In this study, sonication was also used to investigate both effects of the passivation duration and passivation potential on the structure of the oxide layers; the adherence of the layers was found to depend strongly on both parameters. Scanning electron microscopy-energy dispersive X-ray (SEM-EDX) analysis of the zinc surface provided complementary information on the oxide layer composition and structure.展开更多
The change of conductivity, thickness and scanning electron microscopy (SEM) appearance of the anode film of CrWMn in 10% NaNO3 at different anode potential either with or without the magnetic field applied are inve...The change of conductivity, thickness and scanning electron microscopy (SEM) appearance of the anode film of CrWMn in 10% NaNO3 at different anode potential either with or without the magnetic field applied are investigated by testing film resistance, galvanostatic transient and using SEM to design magnetic circuit in magnetic assisted electrochemical machining (MAECM). The experiments show that the anode film has semi-conducting property. Compared with the situation without magnetic field applied, the resistance of the film formed at 1 .SV (anode potential) increased and decreased at 4.0V while B=0.4T and the magnetic north pole points toward anode. The SEM photo demonstrates that the magnetic field will densify the film in the passivation area and quicken dissolution of the anode metal in over-passivation area. Based on the influence of magnetic field on electrochemical machining(ECM) due to the changes of the anode film conductivity behavior, the magnetic north pole should be designed to point towards the workpiece surface that has been machined. Process experiments agree with the results of test analysis.展开更多
The addition of phosphoric acid into sulfuric acid solution is mentioned to be helpful in the reduction of sulfation after deep discharge of lead-acid battery. The anodic behavior of Pb and Pb?In alloys was studied in...The addition of phosphoric acid into sulfuric acid solution is mentioned to be helpful in the reduction of sulfation after deep discharge of lead-acid battery. The anodic behavior of Pb and Pb?In alloys was studied in pure phosphoric acid and sulfuric acid containing various concentrations of phosphoric. The electrochemical measurements were performed using potentiodynamic, potentiostatic and cyclic voltammetric techniques. The composition and morphology of passive layer formed on the surfaces of Pb and Pb?In alloys were characterized by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy analysis (EDX) and scanning electron microscopy (SEM). The potentiodynamic study shows that the passive current density increases with increasing the indium content in the alloy in the examined solutions. The addition of 0.1 mol/L H3PO4 into theelectrolyte is more effective to decrease the thickness of passive film on the surface of alloys containing higher indium content (10% and 15%). The XRD, EDX and SEM data reveal that the formation of PbSO4 and PbO on the surface decreases with increasing the indium level in the alloy and is completely prevented at higher indium content (15%) in mixed acid.展开更多
The corrosion resistance of a low concentration chromate passive film for zinc based alloy coated steel wires was assessed by salt spray and electrochemical corrosion tests. XPS and AES analyses showed that the comp...The corrosion resistance of a low concentration chromate passive film for zinc based alloy coated steel wires was assessed by salt spray and electrochemical corrosion tests. XPS and AES analyses showed that the composition of such chromate passive film was S 5 5, Na 3 4, C 11 8, Ti 7 9, O 41 6, Cr 13 7, Zn 16 0.展开更多
To study the effect of free radical photocurable passivation film modified by titanate coupling agent for hot-plated aluminum-zinc plate,trimethylpropane triacrylate(TMPTA)and 2-phenoxyethyl acrylate were used as acti...To study the effect of free radical photocurable passivation film modified by titanate coupling agent for hot-plated aluminum-zinc plate,trimethylpropane triacrylate(TMPTA)and 2-phenoxyethyl acrylate were used as active diluents,a mixture of modified epoxy acrylate and modified polyester acrylate in a certain proportion was used as an oligomer,2-methyl-1-[4-(methylothyl)benzene]-2-morpholine acetone(907)was used as a free radical photoinitiator,isopropyl thioxanthone(ITX)was used as sensitizer,and bis(dioctyl phosphate acyl)titanate ethyltitanate acrylamide chelate(FD-812)was used as corrosion inhibitor modifier.After UV-curing,the passivation film was characterized by neutral salt spray test,electrochemical testing and other methods.The general performance of the passivation film may meet the requirements of downstream users of hot aluminum-zinc steel plate.The neutral salt spray test,electrochemical testing and microscopic surface morphology analysis of passivation film are in agreement.The introduction of titanate components may effectively promote the photocuring of free radicals.There have been few reports on the titanate coupling which is added to UV-curing coating formula.The titanate coupling agent contains acrylamide groups and terminal amine groups,acrylamide group has oligomer and crosslinking monomer,the terminal tertiary amine groups can provide hydrogen protons,reduce oxygen polymerization,and a phosphating film is formed on the surface of the metal substrate to improve the adhesion and corrosion resistance of the coating.展开更多
The electronic properties of passive films formed on G3 and G30 alloys in bicarbonate/carbonate buffer solution were comparatively studied by electrochemical impedance spectra(EIS) and Mott-Schottky analysis, the ch...The electronic properties of passive films formed on G3 and G30 alloys in bicarbonate/carbonate buffer solution were comparatively studied by electrochemical impedance spectra(EIS) and Mott-Schottky analysis, the chemical composition of the passive film formed on G3 alloy was detected by X-ray photoelectron spectroscopy (XPS). The results show that passive film on G3 alloy had better protection than that on G30 alloy. The transfer resistance, film resistance and diffusion resistance of the passive films on both alloys increased with increasing formation potential, prolonging formation time, increasing pH value, decreasing formation temperature, and decreasing chloride and sulphide ions concentration. Mott-Schottky plot reveals that the passive films on the two alloys show a p-n semi-conductive character. XPS analysis indicates that the passive film on G3 alloy was composed of an inner Cr oxide and an outer Fe, Mo/Ni oxides.展开更多
The surface films on the Si-bearing stainless steels formed after soaking in the concentrated nitric acid for 216 h have been investigated by means of an electron energy spectrometer.It can he reached that Si builds u...The surface films on the Si-bearing stainless steels formed after soaking in the concentrated nitric acid for 216 h have been investigated by means of an electron energy spectrometer.It can he reached that Si builds up in the surface in the form of SiO_2.It plays a main part as a passivating element in the Si-bearing stainless steels in strong oxidizing medium,whereas Cr drops down to the second place.展开更多
An ODS (oxide dispersion strengthened) steels are one of the most notable structural materials being developed for future high-temperature energy production technologies, and several studies have been devoted to the...An ODS (oxide dispersion strengthened) steels are one of the most notable structural materials being developed for future high-temperature energy production technologies, and several studies have been devoted to the development of ODS materials for such applications. However, only little paper focuses on corrosion behavior of F/M (ferritic martensictic) and ODS steels. The corrosion behavior of 11% Cr F/M steel and 15% Cr ODS steel were evaluated using electrochemical methods in borate buffer and 1 kmol m"3 HNO3 with or without NaCI and also in boiling 60% nitric acid. The corrosion resistance results clearly indicated the influences of steel alloys composition and chloride ions. The XPS (X-ray photo-electron spectroscopy) results of the pre-passivated surface revealed that the oxide formed were composed predominantly of Fe203 along with Cr203, and Y203 layers in ODS steel. The corrosion rate measured in boiling nitric acid for 48 h for both the steels shows high corrosion rate in boiling condition. The SEM (scanning electron microscopy) observation of the pit morphology after corrosion tests appears with shallow pit in both steel surfaces The corrosion degradation behavior in relation to the composition of the passive oxide film in different electrolytic solutions is discussed in this paper.展开更多
Bioleaching and electrochemical experiments were conducted to evaluate pyrrhotite dissolution in the presence of pure L.ferriphilum and mixed culture of L. ferriphilum and A. caldus. The results indicate that the pyrr...Bioleaching and electrochemical experiments were conducted to evaluate pyrrhotite dissolution in the presence of pure L.ferriphilum and mixed culture of L. ferriphilum and A. caldus. The results indicate that the pyrrhotite oxidation behavior is the preferential dissolution of iron accompanied with the massive formation of sulfur in the presence of L. ferriphilum, which significantly hinders the leaching efficiency. Comparatively, the leaching rate of pyrrhotite distinctly increases by 68% in the mixed culture of L. ferriphilum and A. caldus at the 3rd day. But, the accumulated ferric ions and high p H value produced by bioleaching process can give rise to the rapid formation of jarosite, which is the primary passivation film blocking continuous iron extraction during bioleaching by the mixed culture. The addition of A. caldus during leaching by L. ferriphilum can accelerate the oxidation rate of pyrrhotite, but not change the electrochemical oxidation mechanisms of pyrrhotite. XRD and SEM/EDS analyses as well as electrochemical study confirm the above conclusions.展开更多
The surface treatment technology of hot aluminum-zinc steel plate and UV curing technology may be effectively combined in the present research. According to different light curing mechanisms, different formulations fr...The surface treatment technology of hot aluminum-zinc steel plate and UV curing technology may be effectively combined in the present research. According to different light curing mechanisms, different formulations from UV curing surface treatment agents can be applied to the surface treatment of hot aluminum-zinc steel plate, mainly including 3-ethyl-3-benzoxy-methyl oxacyclobutane (TCM 104) and 3,4-epoxy-cyclohexylformic acid -3',4'-epoxy-cyclohexyl methyl ester (UVR 6110) as active diluents, high molecular weight polyfunctional oxacyclobutane as oligomer, triaryl sulfonium salt as a cationic photoinitiator, and an anthracene compound as a sensitizer. 385 nm LED lamp used as a radiation resource, the effects of the proportion of active diluent, the type and amount of photoinitiator, the amount of sensitizer, the curing temperature, and the amount of nano-SiO<sub>2</sub> on the photocuring rate were investigated by photoper-scanning differential calorimetry (Photo-DSC). The experimental results show that the system has the fastest photocuring rate under the conditions of 8:2 ratio of TCM 104 to UVR 6110, 2.5% photoinitiator, 0.6% sensitizer, 0.2% nano-SiO<sub>2</sub> additive, and 80˚C curing temperature. Based on addition of the appropriate number of various additives, the cationic photocuring surface treatment solution was prepared and further coated on the hot-dip galvalume steel plates. After curing, the passivation films were characterized by neutral salt spray test (NSST), Fourier transform infrared spectroscopy (FT-IR), electrochemical testing and other methods. The results show that the formulations could be cured at an energy of 150 mJ/cm<sup>2</sup>, and the overall performance of the passivation film could meet with the requirements of the downstream users.展开更多
The present study investigates the mechanical and in-vitro corrosion behavior of Mg-4Zn-0.5Ca-0.8Mn alloy in optimum homogenized conditions.The optimization of the homogenization parameters has been carried out employ...The present study investigates the mechanical and in-vitro corrosion behavior of Mg-4Zn-0.5Ca-0.8Mn alloy in optimum homogenized conditions.The optimization of the homogenization parameters has been carried out employing thermodynamic calculations and kinetic modeling.The model utilizes the inter-diffusivity of the solute elements and predicts that∼6–24 h of homogenization at 633 K effectively redistributes the elements in the Mg matrix.Based on the insights obtained from the simulations,the as-cast Mg-4Zn-0.5Ca-0.8Mn alloy was subjected to homogenization heat treatment process for 6–24h.The microstructural study through optical microscopy and scanning electron microscopy(SEM)revealed that the interconnected network of second phase precipitates substantially dissolve within 24 h,implying adequate homogenization.Moreover,fine Mg-Zn based precipitates with varied morphology and phase fractions also evolved during homogenization treatment,as confirmed through SEM and transmission electron microscopy.In the 12 h homogenized specimen,the highest fraction of uniformly dispersed fine precipitates resulted in the highest strength(∼225 MPa).On the other hand,a substantial disruption in coarse precipitate network and lower aspect ratio of fine Mg-Zn precipitates led to the highest ductility(∼8%)in this specimen.In the 24 h homogenized specimen,the ductility reduced marginally owing to higher aspect ratio of fine precipitates.The immersion and electrochemical tests(viz.,potentiodynamic polarization and electrochemical impedance spectroscopy)carried out in Hank’s solution revealed that the 24 h homogenized specimen exhibits the best corrosion properties.The least fraction of Ca_(2)Mg_(6)Zn_(3)phase with maximum disruption in interconnectivity,in combination with a small fraction of fine equilibrium MgZn_(2)precipitates,resulted in suppression of localized corrosion in this specimen.This promotes the formation of the most stable and compact product layer over the specimen,resulting in the highest corrosion resistance.展开更多
Air nanobubbles(A-NBs)were used to inhibit the brass corrosion in circulating cooling water for the first time in the study.The results of mass loss method and electrochemical method showed that A-NBs had the obvious ...Air nanobubbles(A-NBs)were used to inhibit the brass corrosion in circulating cooling water for the first time in the study.The results of mass loss method and electrochemical method showed that A-NBs had the obvious corrosion inhibition effect.The inhibition rate reached 52%at 35℃.The impedance and surface characterization results of corrosion samples indicated that the corrosion inhibition mechanisms of A-NBs mainly included adsorption of corrosion ions,promoting the formation of the passivation film on metal surface and the formation of the bubble layer and scale film on metal surface.A-NBs are potential excellent corrosion inhibitors.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.52001142,52005228,51801218,51911530211,51905110)Young Scientists Sponsorship Program by CAST(Grant No.2022QNRC001).
文摘This study employs advanced electrochemical and surface characterization techniques to investigate the impact of electrochemical hydrogen charging on the corrosion behavior and surface film of the Ti-6Al-4V alloy.The findings revealed the formation ofγ-TiH andδ-TiH_(2) hydrides in the alloy after hydrogen charging.Prolonging hydrogen charging resulted in more significant degradation of the alloy microstructure,leading to deteriorated protectiveness of the surface film.This trend was further confirmed by the electrochemical measurements,which showed that the corrosion resistance of the alloy progressively worsened as the hydrogen charging time was increased.Consequently,this work provides valuable insights into the mechanisms underlying the corrosion of Ti-6Al-4V alloy under hydrogen charging conditions.
基金financially supported by the National Natural Science Foundation of China(No.51871026)the Natural Science Foundation of Zhejiang Province,China(No.LY18E010004)supported by the National Material Environmental Corrosion Infrastructure,China。
文摘The effect of microstructure and passive film on the corrosion resistance of 2507 super duplex stainless steel(SDSS)in simulated marine environment was investigated by electrochemical measurements,periodic wet–dry cyclic corrosion test,scanning Kelvin probe force microscopy,atomic force microscopy,and X-ray photoelectron spectrometry.The results show that the occupation ratio ofγphase increases with the decrease in cooling rate,whereas the content ofαphase reduces gradually.In addition,theσprecipitated phase only emerges in the annealed steel.The pitting sensitivity and corrosion rate of 2507 SDSS reduce first and then increase as the cooling rate decreases.Theσprecipitated phase drastically reduces the protective ability of the passive film and facilitates micro-galvanic corrosion of the annealed steel.For various microstructures,the pits are preferentially distributed within theσandγphases.The corrosion resistance of 2507 SDSS prepared by different cooling methods is closely related to the microstructure and structure(stability and homogeneity)of the passive film.Normalized steel shows an optimal corrosion resistance,followed by the quenched and annealed steels.
基金the National Natural Science Foundation of China (No.50871020)
文摘The properties of the passive film formed on 2205 stainless steel in acetic acid at high temperature that contained chloride ions were studied by atomic absorption spectrometry (AAS), X-ray photoelectron spectroscopy (XPS), and electrochemical polarization measurements. AAS results show that molybdenum is enriched on the surface as the passive film is dissolved. This enrichment decreases the corrosion resistance because it hinders chloride adsorption and Fe ion dissolution, and acts as a local pH buffer because it consumes protons. The dissolution ratio of Fe/Cr is approximately 10 during the active dissolution of the passive film. XPS results indicate that when the potential is in the passivation region, Cr comprises about 50% of the metal cations in the near-surface region of the passive film and is the main metal constituent in this region. When the polarization potential is much greater than the transpassivation potential, the Mo content accounts for approximately 45% of the metal cations in the nearurface region; Fe and Ni have no obvious influence on the formation, dissolution, or puncture of the passive film.
基金Project (No. 502019) supported by the Natural Science Foundationof Zhejiang Province, China
文摘The electrochemical behavior of metallic passive film on rebar in concrete is characterized by its semiconductive nature. The charge distribution at the interface between a semiconductor and an electrolyte is often determined by measuring the capacitance of the space-charge layer (Csc) as a function of the electrode potential (E). When the space charge-layer serves as the depletion layer, the relation of Csc^-2 vs E resembles a Mott-Schottky plot (M-S plot). The semiconductive properties of the passive film on rebar in concrete were analyzed with M-S plots to study the effect of chloride ions and mineral admixtures on rebar passive films. Some rebar electrodes were immersed in simulated concrete pore solutions, while others were embedded in concrete with/without mineral admixtures. In saturated Ca(OH), solutions, the relation of Csc^-2-E of rebar electrodes shows linear MottSchottky relationship indicating that the passive film on rebar is a highly disordered n-type semiconductor, with donor density (ND) in the order of 10^26m^-3. After adding chloride ions (Cl wt%〈0.2%) in system solutions, the M-S plot slopes significantly decreased and ND increased, suggesting that chloride ion will cause passive film corrosion and breakdown. The M-S plots of the passive film on rebar electrodes embedded in concrete were similar to those immersed in simulated system solution. However, ND of those in concrete with mineral admixtures tended to be a little smaller, indicating that introducing proper quantity admixtures into concrete could make the rebar passive film have a thicker space-charge layer and therefore a thicker passive film layer.
文摘This study aims to systematically analyze the key parameters of the reflow process that influence the uniformity of the chromium passivation film coated on tinplate. The distribution characteristics of the chromium passivation film coated on the tinplate surface under different treatment conditions were systematically characterized using the scanning Kelvin probe technique, X-ray photoelectron spectroscopy, and X-ray diffraction. Results indicate that the use of flux reduces the porosity of tin coating, thereby favoring the uniform growth of the passivation film. Furthermore, an increase in the reflow power and quenching temperature facilitates the homogeneous distribution of the passivation film on the tinplate surface,particularly when treated with electrolytic cathodic sodium dichromate.
基金Supported by Open-Ended Fund of the Key Laboratory of Nuclear Materials and Safety Assessment
文摘Passivity degradation of 304 stainless steel(SS) in simulated alkaline water chemistries at 300℃ was investigated using polarization curve, scanning electron microscope, time-of-flight secondary ion mass spectrometry(SIMS) and X-ray photoelectron spectroscopy(XPS). Experimental results indicated that 304,SS was selfpassive in the test solution and the thickness of passive film was about 500 nm. Hydroxide was enriched in the outer layer whereas oxide was enriched in the inner layer. Sulfur in thiosulfate could be reduced into lower valence of sulfur and enter the passive film so that the composition of passive film was modified by sulfur. Fe and Cr were enriched in the passive film whereas Ni was depleted in the passive film.
基金Supported by the National Basic Research Program of China(No.2007CB707702)
文摘The semi-conductive performances of hot growth film on 316L stainless steel were studied by means of electrochemical impedance spectroscopy(EIS) and Mott-Schottky analysis.The chemical compositions of the hot growth films were detected by X-ray photoelectron spectroscopy(XPS).The results show that the transfer resistance and film resistance increase with increasing temperature to 400℃,then they decrease sharply with further continuously increasing temperature.Formation time plays an important role in determining the electron properties of the hot growth film,when formation time reaches to 1 d,the transfer resistance and film resistance reach to the maximum value.Hot growth film has better anticorrosion behaviour in bicarbonate/carbonate solution containing chloride ions or sulfide ions.Mott-Schottky analysis reveals that hot growth film has n-p type semi-conductive property.XPS results show that the hot growth film is mainly composed of the inner chromium oxide and the outer iron oxide.
文摘In the present study, the passive film formed on the G3 nickel-base alloy tubing under corrosive conditions including H2S ,CO2 ,and Cl-at 130 ℃ and 205 ℃ is studied with X-ray photoelectron spectroscopy(XPS). The results reveal that the passive film formed at 205℃ consists of Cr, Ni, Fe, S and O elements and is over 470 nm in thickness. The passive film can be divided into three layers, the outer-layer is composed of NiS2 and Cr2 S3 , the intermediate-layer of Cr(OH) 3, Ni (OH) 2, NiS2, Cr2 $3 and a small quantity of NiO and Cr2 O3, and the inner-layer of NiO, Cr2 O3, and alloy elements. Due to the invasion of S2 - into the passive film and the decrease of the content of chromium oxide in the film, the corrosion resistance of the G3 alloy in the sour environment at 205 ℃ is weakened.
文摘The influence of 40 kHz ultrasound radiation on the passivation behavior of zinc in 7 M KOH is presented. The results of potentiodynamic and potentiostatic measurements combined with the current oscillation caused by the irradiation were examined to explain the mechanism and the sequence of formation of the oxide films during passivation. In this study, sonication was also used to investigate both effects of the passivation duration and passivation potential on the structure of the oxide layers; the adherence of the layers was found to depend strongly on both parameters. Scanning electron microscopy-energy dispersive X-ray (SEM-EDX) analysis of the zinc surface provided complementary information on the oxide layer composition and structure.
基金National Defense Foundation of China (No.51318030401).
文摘The change of conductivity, thickness and scanning electron microscopy (SEM) appearance of the anode film of CrWMn in 10% NaNO3 at different anode potential either with or without the magnetic field applied are investigated by testing film resistance, galvanostatic transient and using SEM to design magnetic circuit in magnetic assisted electrochemical machining (MAECM). The experiments show that the anode film has semi-conducting property. Compared with the situation without magnetic field applied, the resistance of the film formed at 1 .SV (anode potential) increased and decreased at 4.0V while B=0.4T and the magnetic north pole points toward anode. The SEM photo demonstrates that the magnetic field will densify the film in the passivation area and quicken dissolution of the anode metal in over-passivation area. Based on the influence of magnetic field on electrochemical machining(ECM) due to the changes of the anode film conductivity behavior, the magnetic north pole should be designed to point towards the workpiece surface that has been machined. Process experiments agree with the results of test analysis.
文摘The addition of phosphoric acid into sulfuric acid solution is mentioned to be helpful in the reduction of sulfation after deep discharge of lead-acid battery. The anodic behavior of Pb and Pb?In alloys was studied in pure phosphoric acid and sulfuric acid containing various concentrations of phosphoric. The electrochemical measurements were performed using potentiodynamic, potentiostatic and cyclic voltammetric techniques. The composition and morphology of passive layer formed on the surfaces of Pb and Pb?In alloys were characterized by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy analysis (EDX) and scanning electron microscopy (SEM). The potentiodynamic study shows that the passive current density increases with increasing the indium content in the alloy in the examined solutions. The addition of 0.1 mol/L H3PO4 into theelectrolyte is more effective to decrease the thickness of passive film on the surface of alloys containing higher indium content (10% and 15%). The XRD, EDX and SEM data reveal that the formation of PbSO4 and PbO on the surface decreases with increasing the indium level in the alloy and is completely prevented at higher indium content (15%) in mixed acid.
文摘The corrosion resistance of a low concentration chromate passive film for zinc based alloy coated steel wires was assessed by salt spray and electrochemical corrosion tests. XPS and AES analyses showed that the composition of such chromate passive film was S 5 5, Na 3 4, C 11 8, Ti 7 9, O 41 6, Cr 13 7, Zn 16 0.
基金by the National Basic Research Program of China(2009AA03Z529)。
文摘To study the effect of free radical photocurable passivation film modified by titanate coupling agent for hot-plated aluminum-zinc plate,trimethylpropane triacrylate(TMPTA)and 2-phenoxyethyl acrylate were used as active diluents,a mixture of modified epoxy acrylate and modified polyester acrylate in a certain proportion was used as an oligomer,2-methyl-1-[4-(methylothyl)benzene]-2-morpholine acetone(907)was used as a free radical photoinitiator,isopropyl thioxanthone(ITX)was used as sensitizer,and bis(dioctyl phosphate acyl)titanate ethyltitanate acrylamide chelate(FD-812)was used as corrosion inhibitor modifier.After UV-curing,the passivation film was characterized by neutral salt spray test,electrochemical testing and other methods.The general performance of the passivation film may meet the requirements of downstream users of hot aluminum-zinc steel plate.The neutral salt spray test,electrochemical testing and microscopic surface morphology analysis of passivation film are in agreement.The introduction of titanate components may effectively promote the photocuring of free radicals.There have been few reports on the titanate coupling which is added to UV-curing coating formula.The titanate coupling agent contains acrylamide groups and terminal amine groups,acrylamide group has oligomer and crosslinking monomer,the terminal tertiary amine groups can provide hydrogen protons,reduce oxygen polymerization,and a phosphating film is formed on the surface of the metal substrate to improve the adhesion and corrosion resistance of the coating.
基金Supported by the National Natural Science Foundation of China(Nos.51075228 50721004)
文摘The electronic properties of passive films formed on G3 and G30 alloys in bicarbonate/carbonate buffer solution were comparatively studied by electrochemical impedance spectra(EIS) and Mott-Schottky analysis, the chemical composition of the passive film formed on G3 alloy was detected by X-ray photoelectron spectroscopy (XPS). The results show that passive film on G3 alloy had better protection than that on G30 alloy. The transfer resistance, film resistance and diffusion resistance of the passive films on both alloys increased with increasing formation potential, prolonging formation time, increasing pH value, decreasing formation temperature, and decreasing chloride and sulphide ions concentration. Mott-Schottky plot reveals that the passive films on the two alloys show a p-n semi-conductive character. XPS analysis indicates that the passive film on G3 alloy was composed of an inner Cr oxide and an outer Fe, Mo/Ni oxides.
文摘The surface films on the Si-bearing stainless steels formed after soaking in the concentrated nitric acid for 216 h have been investigated by means of an electron energy spectrometer.It can he reached that Si builds up in the surface in the form of SiO_2.It plays a main part as a passivating element in the Si-bearing stainless steels in strong oxidizing medium,whereas Cr drops down to the second place.
文摘An ODS (oxide dispersion strengthened) steels are one of the most notable structural materials being developed for future high-temperature energy production technologies, and several studies have been devoted to the development of ODS materials for such applications. However, only little paper focuses on corrosion behavior of F/M (ferritic martensictic) and ODS steels. The corrosion behavior of 11% Cr F/M steel and 15% Cr ODS steel were evaluated using electrochemical methods in borate buffer and 1 kmol m"3 HNO3 with or without NaCI and also in boiling 60% nitric acid. The corrosion resistance results clearly indicated the influences of steel alloys composition and chloride ions. The XPS (X-ray photo-electron spectroscopy) results of the pre-passivated surface revealed that the oxide formed were composed predominantly of Fe203 along with Cr203, and Y203 layers in ODS steel. The corrosion rate measured in boiling nitric acid for 48 h for both the steels shows high corrosion rate in boiling condition. The SEM (scanning electron microscopy) observation of the pit morphology after corrosion tests appears with shallow pit in both steel surfaces The corrosion degradation behavior in relation to the composition of the passive oxide film in different electrolytic solutions is discussed in this paper.
基金Project(2010CB630903) supported by the National Basic Research Program of ChinaProject(51374249) supported by the National Natural Science Foundation of China
文摘Bioleaching and electrochemical experiments were conducted to evaluate pyrrhotite dissolution in the presence of pure L.ferriphilum and mixed culture of L. ferriphilum and A. caldus. The results indicate that the pyrrhotite oxidation behavior is the preferential dissolution of iron accompanied with the massive formation of sulfur in the presence of L. ferriphilum, which significantly hinders the leaching efficiency. Comparatively, the leaching rate of pyrrhotite distinctly increases by 68% in the mixed culture of L. ferriphilum and A. caldus at the 3rd day. But, the accumulated ferric ions and high p H value produced by bioleaching process can give rise to the rapid formation of jarosite, which is the primary passivation film blocking continuous iron extraction during bioleaching by the mixed culture. The addition of A. caldus during leaching by L. ferriphilum can accelerate the oxidation rate of pyrrhotite, but not change the electrochemical oxidation mechanisms of pyrrhotite. XRD and SEM/EDS analyses as well as electrochemical study confirm the above conclusions.
文摘The surface treatment technology of hot aluminum-zinc steel plate and UV curing technology may be effectively combined in the present research. According to different light curing mechanisms, different formulations from UV curing surface treatment agents can be applied to the surface treatment of hot aluminum-zinc steel plate, mainly including 3-ethyl-3-benzoxy-methyl oxacyclobutane (TCM 104) and 3,4-epoxy-cyclohexylformic acid -3',4'-epoxy-cyclohexyl methyl ester (UVR 6110) as active diluents, high molecular weight polyfunctional oxacyclobutane as oligomer, triaryl sulfonium salt as a cationic photoinitiator, and an anthracene compound as a sensitizer. 385 nm LED lamp used as a radiation resource, the effects of the proportion of active diluent, the type and amount of photoinitiator, the amount of sensitizer, the curing temperature, and the amount of nano-SiO<sub>2</sub> on the photocuring rate were investigated by photoper-scanning differential calorimetry (Photo-DSC). The experimental results show that the system has the fastest photocuring rate under the conditions of 8:2 ratio of TCM 104 to UVR 6110, 2.5% photoinitiator, 0.6% sensitizer, 0.2% nano-SiO<sub>2</sub> additive, and 80˚C curing temperature. Based on addition of the appropriate number of various additives, the cationic photocuring surface treatment solution was prepared and further coated on the hot-dip galvalume steel plates. After curing, the passivation films were characterized by neutral salt spray test (NSST), Fourier transform infrared spectroscopy (FT-IR), electrochemical testing and other methods. The results show that the formulations could be cured at an energy of 150 mJ/cm<sup>2</sup>, and the overall performance of the passivation film could meet with the requirements of the downstream users.
文摘The present study investigates the mechanical and in-vitro corrosion behavior of Mg-4Zn-0.5Ca-0.8Mn alloy in optimum homogenized conditions.The optimization of the homogenization parameters has been carried out employing thermodynamic calculations and kinetic modeling.The model utilizes the inter-diffusivity of the solute elements and predicts that∼6–24 h of homogenization at 633 K effectively redistributes the elements in the Mg matrix.Based on the insights obtained from the simulations,the as-cast Mg-4Zn-0.5Ca-0.8Mn alloy was subjected to homogenization heat treatment process for 6–24h.The microstructural study through optical microscopy and scanning electron microscopy(SEM)revealed that the interconnected network of second phase precipitates substantially dissolve within 24 h,implying adequate homogenization.Moreover,fine Mg-Zn based precipitates with varied morphology and phase fractions also evolved during homogenization treatment,as confirmed through SEM and transmission electron microscopy.In the 12 h homogenized specimen,the highest fraction of uniformly dispersed fine precipitates resulted in the highest strength(∼225 MPa).On the other hand,a substantial disruption in coarse precipitate network and lower aspect ratio of fine Mg-Zn precipitates led to the highest ductility(∼8%)in this specimen.In the 24 h homogenized specimen,the ductility reduced marginally owing to higher aspect ratio of fine precipitates.The immersion and electrochemical tests(viz.,potentiodynamic polarization and electrochemical impedance spectroscopy)carried out in Hank’s solution revealed that the 24 h homogenized specimen exhibits the best corrosion properties.The least fraction of Ca_(2)Mg_(6)Zn_(3)phase with maximum disruption in interconnectivity,in combination with a small fraction of fine equilibrium MgZn_(2)precipitates,resulted in suppression of localized corrosion in this specimen.This promotes the formation of the most stable and compact product layer over the specimen,resulting in the highest corrosion resistance.
基金supported by National Natural Science Foundation of China(52170074).
文摘Air nanobubbles(A-NBs)were used to inhibit the brass corrosion in circulating cooling water for the first time in the study.The results of mass loss method and electrochemical method showed that A-NBs had the obvious corrosion inhibition effect.The inhibition rate reached 52%at 35℃.The impedance and surface characterization results of corrosion samples indicated that the corrosion inhibition mechanisms of A-NBs mainly included adsorption of corrosion ions,promoting the formation of the passivation film on metal surface and the formation of the bubble layer and scale film on metal surface.A-NBs are potential excellent corrosion inhibitors.