Teaching design incorporating a sense of sustainability to architecture students is a challenge today, primarily because of the trend to label every design as sustainable or green even though it is no different from a...Teaching design incorporating a sense of sustainability to architecture students is a challenge today, primarily because of the trend to label every design as sustainable or green even though it is no different from a more traditional one. The result is a "green-washed" education in architecture. To address this issue, this paper describes a teaching methodology of architectural design with a special focus on sustainability implemented in the Graduate School of Architecture in Clemson. This method includes an analysis of the location, the climate conditions, the materials needed and the construction process. Knowing that sustainable design is generally perceived as being expensive, there is a special focus on simplicity and affordability. Rather than relying on expensive technical solutions, students are encouraged to design for the given environment and apply passive strategies. In the approach discussed in this paper, the design process is a number of logical scientific decisions rather than an intuitive draft. The goal of this pedagogy is to raise awareness about how to handle global resources carefully and to show the importance of the later performance of the project as a key to design. The teaching strategy is described here along with the successful participation by our graduate students in a number of refereed competitions.展开更多
Mosques have intermittent operational schedules with short-term occupancy during the five daily prayers.The occupancy level of the daily prayers is a fraction compared to the mandatory Friday prayers with full occupan...Mosques have intermittent operational schedules with short-term occupancy during the five daily prayers.The occupancy level of the daily prayers is a fraction compared to the mandatory Friday prayers with full occupancy.Usually,the same thermal control mechanism is operated within the same large prayer hall to maintain the thermal comfort of the occupants.Yet,the comfort requirements are often not met due to the short span of operation during prayer times.Nevertheless,mosques have a very high energy usage as the same energyintensive system is operated even during minimal occupancy profiles.The current research aims at using a passive approach towards design to achieve the comfort conditions during the low occupancy daily prayer times without employing mechanical intervention.Numerical simulations are carried out on a validated model of the case study building to investigate the impact of the west-facing Qiblah wall as the congregation stands in proximity to this wall.The design alternatives are tested in conjunction with ventilation strategies to holistically assess the thermal comfort of the occupants.Results show that as much as 4-6℃reduction in indoor wall surface temperature can be achieved with a suitable Qiblah wall design,which reduces the mean radiant temperature of the occupants by 2-4℃.Combined with ventilation strategies,thermal comfort can be significantly improved by at least 40%for the prayers during the hottest times of the day,and as much as 80%for night-time prayers.Results suggest that suitable comfort conditions can be achieved without the need for air-conditioning for at least two or three of the five daily prayers.展开更多
文摘Teaching design incorporating a sense of sustainability to architecture students is a challenge today, primarily because of the trend to label every design as sustainable or green even though it is no different from a more traditional one. The result is a "green-washed" education in architecture. To address this issue, this paper describes a teaching methodology of architectural design with a special focus on sustainability implemented in the Graduate School of Architecture in Clemson. This method includes an analysis of the location, the climate conditions, the materials needed and the construction process. Knowing that sustainable design is generally perceived as being expensive, there is a special focus on simplicity and affordability. Rather than relying on expensive technical solutions, students are encouraged to design for the given environment and apply passive strategies. In the approach discussed in this paper, the design process is a number of logical scientific decisions rather than an intuitive draft. The goal of this pedagogy is to raise awareness about how to handle global resources carefully and to show the importance of the later performance of the project as a key to design. The teaching strategy is described here along with the successful participation by our graduate students in a number of refereed competitions.
文摘Mosques have intermittent operational schedules with short-term occupancy during the five daily prayers.The occupancy level of the daily prayers is a fraction compared to the mandatory Friday prayers with full occupancy.Usually,the same thermal control mechanism is operated within the same large prayer hall to maintain the thermal comfort of the occupants.Yet,the comfort requirements are often not met due to the short span of operation during prayer times.Nevertheless,mosques have a very high energy usage as the same energyintensive system is operated even during minimal occupancy profiles.The current research aims at using a passive approach towards design to achieve the comfort conditions during the low occupancy daily prayer times without employing mechanical intervention.Numerical simulations are carried out on a validated model of the case study building to investigate the impact of the west-facing Qiblah wall as the congregation stands in proximity to this wall.The design alternatives are tested in conjunction with ventilation strategies to holistically assess the thermal comfort of the occupants.Results show that as much as 4-6℃reduction in indoor wall surface temperature can be achieved with a suitable Qiblah wall design,which reduces the mean radiant temperature of the occupants by 2-4℃.Combined with ventilation strategies,thermal comfort can be significantly improved by at least 40%for the prayers during the hottest times of the day,and as much as 80%for night-time prayers.Results suggest that suitable comfort conditions can be achieved without the need for air-conditioning for at least two or three of the five daily prayers.