Viscoelastic foundation plays a very important role in civil engineering. It can effectively disperse the structural load into the foundation soil and avoid the damage caused by the concentrated load. The model of Eul...Viscoelastic foundation plays a very important role in civil engineering. It can effectively disperse the structural load into the foundation soil and avoid the damage caused by the concentrated load. The model of Euler-Bernoulli beam on viscoelastic Pasternak foundation can be used to analyze the deformation and response of buildings under complex geological conditions. In this paper, we use Hermite finite element method to get the numerical approximation scheme for the vibration equation of viscoelastic Pasternak foundation beam. Convergence and error estimation are rigourously established. We prove that the fully discrete scheme has convergence order O(τ2+h4), where τis time step size and his space step size. Finally, we give four numerical examples to verify the validity of theoretical analysis.展开更多
The main objective of this study is to investigate the buckling analysis of CCSs reinforced by CNTs subjected to combined loading of hydrostatic pressure and axial compression resting on the twoparameter elastic found...The main objective of this study is to investigate the buckling analysis of CCSs reinforced by CNTs subjected to combined loading of hydrostatic pressure and axial compression resting on the twoparameter elastic foundation(T-P-EF).It is one of the first attempts to derive the governing equations of the CCSs reinforced with CNTs,based on a generalized first-order shear deformation shell theory(FSDST)which includes shell-foundation interaction.By adopting the extended mixing rule,the effective material properties of CCSs reinforced by CNTs with linear distributions are approximated by introducing some efficiency parameters.Three carbon nanotube distribution in the matrix,i.e.uniform distribution(U)and V and X-types linear distribution are taken into account.The stability equations are solved by using the Galerkin procedure to determine the combined buckling loads(CBLs)of the structure selected here.The numerical illustrations cover CBLs characteristics of CCSs reinforced by CNTs in the presence of the T-P-EF.Finally,a parametric study is carried out to study the influences of the foundation parameters,the volume fraction of carbon nanotubes and the types of reinforcement on the CBLs.展开更多
Two fundamental solutions for bending problem of Reissner's plates on twoparameter foundation are derived by means of Fouier integral transformation of generalized function in this paper.On the basis of virtual wo...Two fundamental solutions for bending problem of Reissner's plates on twoparameter foundation are derived by means of Fouier integral transformation of generalized function in this paper.On the basis of virtual work principles, three boundary integral equations which fit for arbitrary shapes, loads and boundary conditions of thick plates are presented according to Hu Haichang's theory about Reissner's plates. It provides the fundamental theories for the application of BEM. A numerical example is given for clamped, simply supported and free boundary conditions. The results obtained are satisfactory as compared with the analytical methods.展开更多
The dynamic response of an infinite beam placed on a Pasternak foundation when the system was subjected to a moving load was investigated.We used the double Fourier transform and its inversion to solve the formulation...The dynamic response of an infinite beam placed on a Pasternak foundation when the system was subjected to a moving load was investigated.We used the double Fourier transform and its inversion to solve the formulations of the problem.A closed form analytic solution of the beam was obtained by the theorem of residues.We selected a numerical example to illustrate the dynamic response of the beam on Pasternak and Winkler foundations,respectively.We discuss the effect of the moving load velocity on the dynamic displacement response of the beam.The maximum deflection of the beam increases slightly with increased load velocity but increases significantly with reduced shear modulus of subgrade at a given velocity.The maximum deflection of a beam resting on a Pasternak foundation is much smaller than that of a beam on a Winkler foundation.展开更多
The characteristics of transverse free vibration of a tapered Timoshenko beam under an axially conservative compression resting on visco-Pasternak foundations are investigated by the interpolating matrix method. The r...The characteristics of transverse free vibration of a tapered Timoshenko beam under an axially conservative compression resting on visco-Pasternak foundations are investigated by the interpolating matrix method. The research is executed in view of a three-parameter foundation which includes the eff ects of the Winkler coeffi cient, Pasternak coeffi cient and damping coeffi cient of the elastic medium. The governing equations of free vibration of a non-prismatic Timoshenko beam under an axially conservative force resting on visco-Pasternak foundations are transformed into ordinary diff erential equations with variable coeffi cients in light of the bending rotation angle and transverse displacement. All the natural frequencies orders together with the corresponding mode shapes of the beam are calculated at the same time, and a good convergence and accuracy of the proposed method is verifi ed through two numerical examples. The infl uences of foundation mechanical characteristics together with rotary inertia and shear deformation on natural frequencies of the beam with diff erent taper ratios are analyzed. A comprehensive parametric numerical study is carried out emphasizing the primary parameters that describe the dynamic property of the beam.展开更多
Parameter identification of Pasternak foundation models(PFM)is never satisfactory,which discourages the application and popularization of PFM.In the present study,an energy-based model to predict the dynamic foundatio...Parameter identification of Pasternak foundation models(PFM)is never satisfactory,which discourages the application and popularization of PFM.In the present study,an energy-based model to predict the dynamic foundation coefficients was proposed using the vibration kinetic energy and potential energy of a Pasternak foundation-rigid plate system.On the basis of the Pasternak foundation,the relationship among the natural frequency,dynamic foundation coefficients,rigid plate configuration,and vibrating soil equivalent mass per unit area was considered.To obtain the natural frequencies of the Pasternak foundation-rigid plate system,dynamic tests were performed.Using two or more dynamic test results of various rigid plates on a foundation,a set of equations of dynamic foundation coefficients was set up to directly identify the foundation coefficients and equivalent mass per unit area of vibrating soil.The feasibility of the proposed method was verified by comparing it with the outdoor and indoor test results and finite element analysis results.When the proposed method is used to obtain the dynamic parameters,PFM can be generalized and applied more widely in engineering practice.展开更多
In this study, the stability of cylindrical shells that composed of ceramic, FGM, and metal layers subjected to axial load and resting on Winkler-Pasternak foundations is investigated. Material properties of FGM layer...In this study, the stability of cylindrical shells that composed of ceramic, FGM, and metal layers subjected to axial load and resting on Winkler-Pasternak foundations is investigated. Material properties of FGM layer are varied continuously in thickness direction according to a simple power distribution in terms of the ceramic and metal volume fractions. The modified Donnell type stability and compatibility equations on the Pasternak foundation are obtained. Applying Galerkin’s method analytic solutions are obtained for the critical axial load of three-layered cylindrical shells containing an FGM layer with and without elastic foundation. The detailed parametric studies are carried out to study the influences of thickness variations of the FGM layer, radius-to-thickness ratio, material composition and material profile index, Winkler and Pasternak foundations on the critical axial load of three-layered cylindrical shells. Comparing results with those in the literature validates the present analysis.展开更多
A new numerical method-Green quasifunction is proposed. The idea of Green quasifunction method is clarified in detail by considering a vibration problem of simply-supported thin polygonic plates on Pasternak foundatio...A new numerical method-Green quasifunction is proposed. The idea of Green quasifunction method is clarified in detail by considering a vibration problem of simply-supported thin polygonic plates on Pasternak foundation. A Green quasifunction is established by using the fundamental solution and boundary equation of the problem. This function satisfies the homogeneous boundary condition of the problem. The mode shape differential equation of the vibration problem of simply-supported thin plates on Pasternak foundation is reduced to two simultaneous Fredholm integral equations of the second kind by Green formula. There are multiple choices for the normalized boundary equation. Based on a chosen normalized boundary equation, a new normalized boundary equation can be established such that the irregularity of the kernel of integral equations is overcome. Finally, natural frequency is obtained by the condition that there exists a nontrivial solution in the numerically discrete algebraic equations derived from the integral equations. Numerical results show high accuracy of the Green quasifunction method.展开更多
This paper uses isogeometric analysis(IGA)based on higher-order shear deformation theory(HSDT)to study the dynamic response of bio-inspired helicoid laminated composite(B-iHLC)plates resting on Pasternak foundation(PF...This paper uses isogeometric analysis(IGA)based on higher-order shear deformation theory(HSDT)to study the dynamic response of bio-inspired helicoid laminated composite(B-iHLC)plates resting on Pasternak foundation(PF)excited by explosive loading.IGA takes advantage of non-uniform rational Bspline(NURBS)basic functions to exactly represent the structure geometry models and the attainment of higher-order approximation conditions.This method also ensures a C1 continuous function in the analysis of transverse shear deformation via HSDT.Furthermore,IGA eliminates the requirement for correction factors and delivers accurate results.Pasternak foundation with two stiffness parameters:springer stiffness(k_(1))and shear stiffness(k_(2)).The derivation of the governing equations is based on Hamilton's principle.The proposed method is validated through numerical examples.A comprehensive analysis of the impact of geometrical parameters,material properties,boundary conditions(BCs),and foundation stiffness on dynamic response of B-i HLC plates is carried out.展开更多
This study focuses on vibration analysis of cylindrical pressure vessels constructed by functionally graded carbon nanotube reinforced composites(FG-CNTRC).The vessel is under internal pressure and surrounded by a Pas...This study focuses on vibration analysis of cylindrical pressure vessels constructed by functionally graded carbon nanotube reinforced composites(FG-CNTRC).The vessel is under internal pressure and surrounded by a Pasternak foundation.This investigation was founded based on two-dimensional elastic analysis and used Hamilton’s principle to drive the governing equations.The deformations and effective-mechanical properties of the reinforced structure were elicited from the first-order shear theory(FSDT)and rule of mixture,respectively.The main goal of this study is to show the effects of various design parameters such as boundary conditions,reinforcement distribution,foundation parameters,and aspect ratio on the free vibration characteristics of the structure.展开更多
Wave propagation analysis for a functionally graded nanobeam with rectangular cross-section resting on visco-Pasternak's foundation is studied in this paper. Timoshenko's beam model and nonlocal elasticity theory ar...Wave propagation analysis for a functionally graded nanobeam with rectangular cross-section resting on visco-Pasternak's foundation is studied in this paper. Timoshenko's beam model and nonlocal elasticity theory are employed for formulation of the problem. The equations of motion are derived using Hamilton's principals by calculating kinetic energy, strain energy and work due to viscoelastic foundation. The effects of various parameters such as wavenumber, non-homogeneous index, nonlocal parameter and three parameters of foundation are performed on the phase velocity of the nanobeam. The obtained results indicate that some parameters such as non-homogeneous index, nonlocal parameter and wavenumber have significant effect on the response of the system.展开更多
This work presents the static and dynamic analyses of laminated doubly-curved shells and panels of revolution resting on Winkler-Pasternak elastic foundations using the Generalized Differential Quadrature (GDQ) method...This work presents the static and dynamic analyses of laminated doubly-curved shells and panels of revolution resting on Winkler-Pasternak elastic foundations using the Generalized Differential Quadrature (GDQ) method. The analyses are worked out considering the First-order Shear Deformation Theory (FSDT) for the above mentioned moderately thick structural elements. The effect of the shell curvatures is included from the beginning of the theory formulation in the kinematic model. The solutions are given in terms of generalized displacement components of points lying on the middle surface of the shell. Simple Rational Bézier curves are used to define the meridian curve of the revolution structures. The discretization of the system by means of the GDQ technique leads to a standard linear problem for the static analysis and to a standard linear eigenvalue problem for the dynamic analysis. Comparisons between the present formulation and the Reissner-Mindlin theory are presented. Furthermore, GDQ results are compared with those obtained by using commercial programs. Very good agreement is observed. Finally, new results are presented in order to investtigate the effects of the Winkler modulus, the Pasternak modulus and the inertia of the elastic foundation on the behavior of laminated shells of revolution.展开更多
Free vibration analysis of symmetrically laminated composite plates resting on Pasternak elastic support and coupled with an ideal, incompressible and inviscid fluid is the objective of the present work. The fluid dom...Free vibration analysis of symmetrically laminated composite plates resting on Pasternak elastic support and coupled with an ideal, incompressible and inviscid fluid is the objective of the present work. The fluid domain is considered to be infinite in the length direction but bounded in the depth and width directions. In order to derive the eigenvalue equation, Rayleigh-Ritz method is applied for the fluid-plate-foundation system. The efficiency of the method is proved by comparison studies with those reported in the open literature. At the end, parametric studies are carried out to examine the impact of different parameters on the natural frequencies.展开更多
The free vibration characteristics of fluid-filled functionally graded cylindrical shells buried partially in elas- tic foundations are investigated by an analytical method. The elastic foundation of partial axial and...The free vibration characteristics of fluid-filled functionally graded cylindrical shells buried partially in elas- tic foundations are investigated by an analytical method. The elastic foundation of partial axial and angular dimen- sions is represented by the Pasternak model. The motion of the shells is represented by the first-order shear defor- mation theory to account for rotary inertia and transverse shear strains. The functionally graded cylindrical shells are composed of stainless steel and silicon nitride. Material prop- erties vary continuously through the thickness according to a power law distribution in terms of the volume fraction of the constituents. The governing equation is obtained using the Rayleigh-Ritz method and a variation approach. The fluid is described by the classical potential flow theory. Numerical examples are presented and compared with existing available results to validate the present method.展开更多
In this study,the effects of elastic foundations(EFs)and carbon nanotube(CNT)reinforcement on the hydrostatic buckling pressure(HBP)of truncated conical shells(TCSs)are investigated.The first order shear deformation t...In this study,the effects of elastic foundations(EFs)and carbon nanotube(CNT)reinforcement on the hydrostatic buckling pressure(HBP)of truncated conical shells(TCSs)are investigated.The first order shear deformation theory(FOSDT)is generalized to the buckling problem of TCSs reinforced with CNTs resting on the EFs for the first time.The material properties of composite TCSs reinforced with CNTs are graded linearly according to the thickness coordinate.The Winkler elastic foundation(W-EF)and Pasternak elastic foundation(P-EF)are considered as the EF.The basic relations and equations of TCSs reinforced with CNTs on the EFs are obtained in the framework of the FOSDT and solved using the Galerkin method.One of the innovations in this study is to obtain a closed-form solution for the HBP of TCSs reinforced with CNTs on the EFs.Finally,the effects of the EFs and various types CNT reinforcements on the HBP are investigated simultaneously.The obtained results are compared with the results in the literature,and the accuracy of results is confirmed.展开更多
The effect of Pasternak foundation and non-homogenity on the axisymmetric vibrations of polar orthotropic parabolically varying tapered circular plates has been analyzed on the basis of classical plate theory. Ritz me...The effect of Pasternak foundation and non-homogenity on the axisymmetric vibrations of polar orthotropic parabolically varying tapered circular plates has been analyzed on the basis of classical plate theory. Ritz method has been used to find the numerical solution of the specified problem. The efficiency of the Ritz method depends on the choice of basis function based upon deflection of polar orthotropic plates. The effects of different plate parameters viz. elastic foundation, non-homogeneity, taper parameter and that of orthotropy on fundamental, second and third mode of vibration have been studied for clamped and simply-supported boundary conditions. Mode shapes for specified plates have been drawn for both the boundary conditions. Convergence and comparison studies have been carried out for specified plates.展开更多
In this study,the vibration stability of fluid conveying pipe resting on two-parameter foundation is in-vestigated under four different elastic support boundary conditions.The harmonic differential quadrature(HDQ)meth...In this study,the vibration stability of fluid conveying pipe resting on two-parameter foundation is in-vestigated under four different elastic support boundary conditions.The harmonic differential quadrature(HDQ)method is applied to solve the governing vibration equation derived based on Euler–Bernoulli beam theory subject to the elastic foundation and boundary conditions.As a result,a general set of second-order ordinary differential equations emerges,and by appropriately setting the stiffness of the end springs,one can easily study the dynamics of various systems with classical or non-classical bound-ary conditions.The numerical simulations are conducted to study the pipe instability performance with respect to various boundary conditions,elastic support parameters,elastic foundation parameters and fluid mass ratios.The numerical model is validated by comparison with published data.It is found that the elastic support boundary conditions have significant effects on the stability of pipe resting on elas-tic foundation.The pipe stability performance is very sensitive to the two elastic foundation parameters.Larger fluid mass ratio enhances the pipe flutter stability performance but has no effects on the diver-gence.展开更多
文摘Viscoelastic foundation plays a very important role in civil engineering. It can effectively disperse the structural load into the foundation soil and avoid the damage caused by the concentrated load. The model of Euler-Bernoulli beam on viscoelastic Pasternak foundation can be used to analyze the deformation and response of buildings under complex geological conditions. In this paper, we use Hermite finite element method to get the numerical approximation scheme for the vibration equation of viscoelastic Pasternak foundation beam. Convergence and error estimation are rigourously established. We prove that the fully discrete scheme has convergence order O(τ2+h4), where τis time step size and his space step size. Finally, we give four numerical examples to verify the validity of theoretical analysis.
文摘The main objective of this study is to investigate the buckling analysis of CCSs reinforced by CNTs subjected to combined loading of hydrostatic pressure and axial compression resting on the twoparameter elastic foundation(T-P-EF).It is one of the first attempts to derive the governing equations of the CCSs reinforced with CNTs,based on a generalized first-order shear deformation shell theory(FSDST)which includes shell-foundation interaction.By adopting the extended mixing rule,the effective material properties of CCSs reinforced by CNTs with linear distributions are approximated by introducing some efficiency parameters.Three carbon nanotube distribution in the matrix,i.e.uniform distribution(U)and V and X-types linear distribution are taken into account.The stability equations are solved by using the Galerkin procedure to determine the combined buckling loads(CBLs)of the structure selected here.The numerical illustrations cover CBLs characteristics of CCSs reinforced by CNTs in the presence of the T-P-EF.Finally,a parametric study is carried out to study the influences of the foundation parameters,the volume fraction of carbon nanotubes and the types of reinforcement on the CBLs.
文摘Two fundamental solutions for bending problem of Reissner's plates on twoparameter foundation are derived by means of Fouier integral transformation of generalized function in this paper.On the basis of virtual work principles, three boundary integral equations which fit for arbitrary shapes, loads and boundary conditions of thick plates are presented according to Hu Haichang's theory about Reissner's plates. It provides the fundamental theories for the application of BEM. A numerical example is given for clamped, simply supported and free boundary conditions. The results obtained are satisfactory as compared with the analytical methods.
文摘The dynamic response of an infinite beam placed on a Pasternak foundation when the system was subjected to a moving load was investigated.We used the double Fourier transform and its inversion to solve the formulations of the problem.A closed form analytic solution of the beam was obtained by the theorem of residues.We selected a numerical example to illustrate the dynamic response of the beam on Pasternak and Winkler foundations,respectively.We discuss the effect of the moving load velocity on the dynamic displacement response of the beam.The maximum deflection of the beam increases slightly with increased load velocity but increases significantly with reduced shear modulus of subgrade at a given velocity.The maximum deflection of a beam resting on a Pasternak foundation is much smaller than that of a beam on a Winkler foundation.
基金AHKJT of China under Grant Nos.1708085QE121 and 1808085ME147AHEDU of China under Grant No.TSKJ2017B13
文摘The characteristics of transverse free vibration of a tapered Timoshenko beam under an axially conservative compression resting on visco-Pasternak foundations are investigated by the interpolating matrix method. The research is executed in view of a three-parameter foundation which includes the eff ects of the Winkler coeffi cient, Pasternak coeffi cient and damping coeffi cient of the elastic medium. The governing equations of free vibration of a non-prismatic Timoshenko beam under an axially conservative force resting on visco-Pasternak foundations are transformed into ordinary diff erential equations with variable coeffi cients in light of the bending rotation angle and transverse displacement. All the natural frequencies orders together with the corresponding mode shapes of the beam are calculated at the same time, and a good convergence and accuracy of the proposed method is verifi ed through two numerical examples. The infl uences of foundation mechanical characteristics together with rotary inertia and shear deformation on natural frequencies of the beam with diff erent taper ratios are analyzed. A comprehensive parametric numerical study is carried out emphasizing the primary parameters that describe the dynamic property of the beam.
文摘Parameter identification of Pasternak foundation models(PFM)is never satisfactory,which discourages the application and popularization of PFM.In the present study,an energy-based model to predict the dynamic foundation coefficients was proposed using the vibration kinetic energy and potential energy of a Pasternak foundation-rigid plate system.On the basis of the Pasternak foundation,the relationship among the natural frequency,dynamic foundation coefficients,rigid plate configuration,and vibrating soil equivalent mass per unit area was considered.To obtain the natural frequencies of the Pasternak foundation-rigid plate system,dynamic tests were performed.Using two or more dynamic test results of various rigid plates on a foundation,a set of equations of dynamic foundation coefficients was set up to directly identify the foundation coefficients and equivalent mass per unit area of vibrating soil.The feasibility of the proposed method was verified by comparing it with the outdoor and indoor test results and finite element analysis results.When the proposed method is used to obtain the dynamic parameters,PFM can be generalized and applied more widely in engineering practice.
文摘In this study, the stability of cylindrical shells that composed of ceramic, FGM, and metal layers subjected to axial load and resting on Winkler-Pasternak foundations is investigated. Material properties of FGM layer are varied continuously in thickness direction according to a simple power distribution in terms of the ceramic and metal volume fractions. The modified Donnell type stability and compatibility equations on the Pasternak foundation are obtained. Applying Galerkin’s method analytic solutions are obtained for the critical axial load of three-layered cylindrical shells containing an FGM layer with and without elastic foundation. The detailed parametric studies are carried out to study the influences of thickness variations of the FGM layer, radius-to-thickness ratio, material composition and material profile index, Winkler and Pasternak foundations on the critical axial load of three-layered cylindrical shells. Comparing results with those in the literature validates the present analysis.
基金Project supported by the Key Laboratory of Disaster Forecast and Control in Engineering,Ministry of Education of China the Key Laboratory of Diagnosis of Fault in Engineering Structures of Guangdong Province of China
文摘A new numerical method-Green quasifunction is proposed. The idea of Green quasifunction method is clarified in detail by considering a vibration problem of simply-supported thin polygonic plates on Pasternak foundation. A Green quasifunction is established by using the fundamental solution and boundary equation of the problem. This function satisfies the homogeneous boundary condition of the problem. The mode shape differential equation of the vibration problem of simply-supported thin plates on Pasternak foundation is reduced to two simultaneous Fredholm integral equations of the second kind by Green formula. There are multiple choices for the normalized boundary equation. Based on a chosen normalized boundary equation, a new normalized boundary equation can be established such that the irregularity of the kernel of integral equations is overcome. Finally, natural frequency is obtained by the condition that there exists a nontrivial solution in the numerically discrete algebraic equations derived from the integral equations. Numerical results show high accuracy of the Green quasifunction method.
文摘This paper uses isogeometric analysis(IGA)based on higher-order shear deformation theory(HSDT)to study the dynamic response of bio-inspired helicoid laminated composite(B-iHLC)plates resting on Pasternak foundation(PF)excited by explosive loading.IGA takes advantage of non-uniform rational Bspline(NURBS)basic functions to exactly represent the structure geometry models and the attainment of higher-order approximation conditions.This method also ensures a C1 continuous function in the analysis of transverse shear deformation via HSDT.Furthermore,IGA eliminates the requirement for correction factors and delivers accurate results.Pasternak foundation with two stiffness parameters:springer stiffness(k_(1))and shear stiffness(k_(2)).The derivation of the governing equations is based on Hamilton's principle.The proposed method is validated through numerical examples.A comprehensive analysis of the impact of geometrical parameters,material properties,boundary conditions(BCs),and foundation stiffness on dynamic response of B-i HLC plates is carried out.
基金This work was financially supported by the University of Kashan(Grant Number:574613/026).
文摘This study focuses on vibration analysis of cylindrical pressure vessels constructed by functionally graded carbon nanotube reinforced composites(FG-CNTRC).The vessel is under internal pressure and surrounded by a Pasternak foundation.This investigation was founded based on two-dimensional elastic analysis and used Hamilton’s principle to drive the governing equations.The deformations and effective-mechanical properties of the reinforced structure were elicited from the first-order shear theory(FSDT)and rule of mixture,respectively.The main goal of this study is to show the effects of various design parameters such as boundary conditions,reinforcement distribution,foundation parameters,and aspect ratio on the free vibration characteristics of the structure.
基金financially supported by the University of Kashan(Grant Number:363460/5)Iranian Nanotechnology Development Committee(Grant Number:1396/17)
文摘Wave propagation analysis for a functionally graded nanobeam with rectangular cross-section resting on visco-Pasternak's foundation is studied in this paper. Timoshenko's beam model and nonlocal elasticity theory are employed for formulation of the problem. The equations of motion are derived using Hamilton's principals by calculating kinetic energy, strain energy and work due to viscoelastic foundation. The effects of various parameters such as wavenumber, non-homogeneous index, nonlocal parameter and three parameters of foundation are performed on the phase velocity of the nanobeam. The obtained results indicate that some parameters such as non-homogeneous index, nonlocal parameter and wavenumber have significant effect on the response of the system.
文摘This work presents the static and dynamic analyses of laminated doubly-curved shells and panels of revolution resting on Winkler-Pasternak elastic foundations using the Generalized Differential Quadrature (GDQ) method. The analyses are worked out considering the First-order Shear Deformation Theory (FSDT) for the above mentioned moderately thick structural elements. The effect of the shell curvatures is included from the beginning of the theory formulation in the kinematic model. The solutions are given in terms of generalized displacement components of points lying on the middle surface of the shell. Simple Rational Bézier curves are used to define the meridian curve of the revolution structures. The discretization of the system by means of the GDQ technique leads to a standard linear problem for the static analysis and to a standard linear eigenvalue problem for the dynamic analysis. Comparisons between the present formulation and the Reissner-Mindlin theory are presented. Furthermore, GDQ results are compared with those obtained by using commercial programs. Very good agreement is observed. Finally, new results are presented in order to investtigate the effects of the Winkler modulus, the Pasternak modulus and the inertia of the elastic foundation on the behavior of laminated shells of revolution.
文摘Free vibration analysis of symmetrically laminated composite plates resting on Pasternak elastic support and coupled with an ideal, incompressible and inviscid fluid is the objective of the present work. The fluid domain is considered to be infinite in the length direction but bounded in the depth and width directions. In order to derive the eigenvalue equation, Rayleigh-Ritz method is applied for the fluid-plate-foundation system. The efficiency of the method is proved by comparison studies with those reported in the open literature. At the end, parametric studies are carried out to examine the impact of different parameters on the natural frequencies.
文摘The free vibration characteristics of fluid-filled functionally graded cylindrical shells buried partially in elas- tic foundations are investigated by an analytical method. The elastic foundation of partial axial and angular dimen- sions is represented by the Pasternak model. The motion of the shells is represented by the first-order shear defor- mation theory to account for rotary inertia and transverse shear strains. The functionally graded cylindrical shells are composed of stainless steel and silicon nitride. Material prop- erties vary continuously through the thickness according to a power law distribution in terms of the volume fraction of the constituents. The governing equation is obtained using the Rayleigh-Ritz method and a variation approach. The fluid is described by the classical potential flow theory. Numerical examples are presented and compared with existing available results to validate the present method.
文摘In this study,the effects of elastic foundations(EFs)and carbon nanotube(CNT)reinforcement on the hydrostatic buckling pressure(HBP)of truncated conical shells(TCSs)are investigated.The first order shear deformation theory(FOSDT)is generalized to the buckling problem of TCSs reinforced with CNTs resting on the EFs for the first time.The material properties of composite TCSs reinforced with CNTs are graded linearly according to the thickness coordinate.The Winkler elastic foundation(W-EF)and Pasternak elastic foundation(P-EF)are considered as the EF.The basic relations and equations of TCSs reinforced with CNTs on the EFs are obtained in the framework of the FOSDT and solved using the Galerkin method.One of the innovations in this study is to obtain a closed-form solution for the HBP of TCSs reinforced with CNTs on the EFs.Finally,the effects of the EFs and various types CNT reinforcements on the HBP are investigated simultaneously.The obtained results are compared with the results in the literature,and the accuracy of results is confirmed.
文摘The effect of Pasternak foundation and non-homogenity on the axisymmetric vibrations of polar orthotropic parabolically varying tapered circular plates has been analyzed on the basis of classical plate theory. Ritz method has been used to find the numerical solution of the specified problem. The efficiency of the Ritz method depends on the choice of basis function based upon deflection of polar orthotropic plates. The effects of different plate parameters viz. elastic foundation, non-homogeneity, taper parameter and that of orthotropy on fundamental, second and third mode of vibration have been studied for clamped and simply-supported boundary conditions. Mode shapes for specified plates have been drawn for both the boundary conditions. Convergence and comparison studies have been carried out for specified plates.
文摘In this study,the vibration stability of fluid conveying pipe resting on two-parameter foundation is in-vestigated under four different elastic support boundary conditions.The harmonic differential quadrature(HDQ)method is applied to solve the governing vibration equation derived based on Euler–Bernoulli beam theory subject to the elastic foundation and boundary conditions.As a result,a general set of second-order ordinary differential equations emerges,and by appropriately setting the stiffness of the end springs,one can easily study the dynamics of various systems with classical or non-classical bound-ary conditions.The numerical simulations are conducted to study the pipe instability performance with respect to various boundary conditions,elastic support parameters,elastic foundation parameters and fluid mass ratios.The numerical model is validated by comparison with published data.It is found that the elastic support boundary conditions have significant effects on the stability of pipe resting on elas-tic foundation.The pipe stability performance is very sensitive to the two elastic foundation parameters.Larger fluid mass ratio enhances the pipe flutter stability performance but has no effects on the diver-gence.