Helicobacter pylori(H. pylori) is a model organism for understanding host-pathogen interactions and infection-mediated carcinogenesis. Gastric cancer and H. pylori colonization indicates the strong correlation. The pr...Helicobacter pylori(H. pylori) is a model organism for understanding host-pathogen interactions and infection-mediated carcinogenesis. Gastric cancer and H. pylori colonization indicates the strong correlation. The progression and exacerbation of H. pylori infection are influenced by some factors of pathogen and host. Several virulence factors involved in the proper adherence and attenuation of immune defense to contribute the risk of emerging gastric cancer, therefore analysis of them is very important. H. pylori also modulates inflammatory and autophagy process to intensify its pathogenicity. From the host regard, different genetic factors particularly affect the development of gastric cancer. Indeed, epigenetic modifications, Micro RNA and long non-coding RNA received more attention. Generally, various factors related to pathogen and host that modulate gastric cancer development in response to H. pylori need more attention due to develop an efficacious therapeutic intervention. Therefore, this paper will present a brief overview of host-pathogen interaction especially emphases on bacterial virulence factors, interruption of host cellular signaling, the role of epigenetic modifications and non-coding RNAs.展开更多
Negative-sense RNA viruses comprise several zoonotic pathogens that mutate rapidly and frequently emerge in people including Influenza, Ebola, Rabies, Hendra and Nipah viruses. Acute respiratory distress syndrome, enc...Negative-sense RNA viruses comprise several zoonotic pathogens that mutate rapidly and frequently emerge in people including Influenza, Ebola, Rabies, Hendra and Nipah viruses. Acute respiratory distress syndrome, encephalitis and vasculitis are common disease outcomes in people as a result of pathogenic viral infection, and are also associated with high case fatality rates. Viral spread from exposure sites to systemic tissues and organs is mediated by virulence factors, including viral attachment glycoproteins and accessory proteins, and their contribution to infection and disease have been delineated by reverse genetics; a molecular approach that enables researchers to experimentally produce recombinant and reassortant viruses from cloned cD NA. Through reverse genetics we have developed a deeper understanding of virulence factors key to disease causation thereby enabling development of targeted antiviral therapies and well-defined live attenuated vaccines. Despite the value of reverse genetics for virulence factor discovery, classical reverse genetic approaches may not provide sufficient resolution for characterization of heterogeneous viral populations, because current techniques recover clonal virus, representing a consensus sequence. In this review the contribution of reverse genetics to virulence factor characterization is outlined, while the limitation of the technique is discussed withreference to new technologies that may be utilized to improve reverse genetic approaches.展开更多
Next generation sequencing is a powerful technology whose application in sequencing entire RNA populations (RNA-Seq) of food-borne pathogens will provide valuable insights. A problem unique to prokaryotic RNA-Seq is r...Next generation sequencing is a powerful technology whose application in sequencing entire RNA populations (RNA-Seq) of food-borne pathogens will provide valuable insights. A problem unique to prokaryotic RNA-Seq is removal of ribosomal RNA. Unlike eukaryotic messenger RNA (mRNA), bacterial mRNA species are devoid of polyadenylation at the 3’-end and thus the approach of affinity enrichment of mRNA using oligo-dT probes is not an option. Among several approaches to enriching mRNA molecules, removal of ribosomal RNA (rRNA) by subtractive hybridization has been widely used. This approach is a single-step procedure for which several rRNA-depletion kits are commercially available. We evaluated three commercially available rRNA-depletion kits to determine their respective efficiencies of rRNA removal from Salmonella enterica serovar Typhimurium strain SL1344. The three protocols achieved varying degrees of rRNA depletion and resulted in 8 to 1000-fold enrichment of mRNA. rRNA removal probes from two of the three kits were unable to titrate out 23S rRNA species while removal of 16S rRNA was less efficient. The Ribo-Zero kit was most efficient in eliminating 16S, 23S and 5S ribosomal RNA species from the transcriptome of S. enterica serovar Typhimurium strain SL1344.展开更多
文摘Helicobacter pylori(H. pylori) is a model organism for understanding host-pathogen interactions and infection-mediated carcinogenesis. Gastric cancer and H. pylori colonization indicates the strong correlation. The progression and exacerbation of H. pylori infection are influenced by some factors of pathogen and host. Several virulence factors involved in the proper adherence and attenuation of immune defense to contribute the risk of emerging gastric cancer, therefore analysis of them is very important. H. pylori also modulates inflammatory and autophagy process to intensify its pathogenicity. From the host regard, different genetic factors particularly affect the development of gastric cancer. Indeed, epigenetic modifications, Micro RNA and long non-coding RNA received more attention. Generally, various factors related to pathogen and host that modulate gastric cancer development in response to H. pylori need more attention due to develop an efficacious therapeutic intervention. Therefore, this paper will present a brief overview of host-pathogen interaction especially emphases on bacterial virulence factors, interruption of host cellular signaling, the role of epigenetic modifications and non-coding RNAs.
文摘Negative-sense RNA viruses comprise several zoonotic pathogens that mutate rapidly and frequently emerge in people including Influenza, Ebola, Rabies, Hendra and Nipah viruses. Acute respiratory distress syndrome, encephalitis and vasculitis are common disease outcomes in people as a result of pathogenic viral infection, and are also associated with high case fatality rates. Viral spread from exposure sites to systemic tissues and organs is mediated by virulence factors, including viral attachment glycoproteins and accessory proteins, and their contribution to infection and disease have been delineated by reverse genetics; a molecular approach that enables researchers to experimentally produce recombinant and reassortant viruses from cloned cD NA. Through reverse genetics we have developed a deeper understanding of virulence factors key to disease causation thereby enabling development of targeted antiviral therapies and well-defined live attenuated vaccines. Despite the value of reverse genetics for virulence factor discovery, classical reverse genetic approaches may not provide sufficient resolution for characterization of heterogeneous viral populations, because current techniques recover clonal virus, representing a consensus sequence. In this review the contribution of reverse genetics to virulence factor characterization is outlined, while the limitation of the technique is discussed withreference to new technologies that may be utilized to improve reverse genetic approaches.
文摘Next generation sequencing is a powerful technology whose application in sequencing entire RNA populations (RNA-Seq) of food-borne pathogens will provide valuable insights. A problem unique to prokaryotic RNA-Seq is removal of ribosomal RNA. Unlike eukaryotic messenger RNA (mRNA), bacterial mRNA species are devoid of polyadenylation at the 3’-end and thus the approach of affinity enrichment of mRNA using oligo-dT probes is not an option. Among several approaches to enriching mRNA molecules, removal of ribosomal RNA (rRNA) by subtractive hybridization has been widely used. This approach is a single-step procedure for which several rRNA-depletion kits are commercially available. We evaluated three commercially available rRNA-depletion kits to determine their respective efficiencies of rRNA removal from Salmonella enterica serovar Typhimurium strain SL1344. The three protocols achieved varying degrees of rRNA depletion and resulted in 8 to 1000-fold enrichment of mRNA. rRNA removal probes from two of the three kits were unable to titrate out 23S rRNA species while removal of 16S rRNA was less efficient. The Ribo-Zero kit was most efficient in eliminating 16S, 23S and 5S ribosomal RNA species from the transcriptome of S. enterica serovar Typhimurium strain SL1344.