In order to research the feasibility of using the selective adsorption principle to achieve automatic shaping of nano patterns,in this study,using the liquid gallium as the conductive ink and graphene as the printing ...In order to research the feasibility of using the selective adsorption principle to achieve automatic shaping of nano patterns,in this study,using the liquid gallium as the conductive ink and graphene as the printing plate surface,by changing the surface wettability of patterned areas on the nanoscale of graphene printed boards,the automatic formation of liquid gallium patterns on the graphene printed plate surface was simulated.The results indicated that liquid gallium can achieve automatic patterning on the surface of graphene patterned areas;the greater the interaction energy between gallium and carbon atoms,the clearer the pattern;gallium liquid is prone to remain in complex local positions of the pattern,making it difficult to shape the pattern;if the spacing between adjacent pattern lines is too large or too small,it will result in residual gallium liquid between the lines;increasing the thickness of the gallium film will cause the pattern to expand beyond the boundary,but increasing the thickness of the gallium film can also enhance the thickness and uniformity of the pattern lines.In summary,the principle of selective adsorption can be used to achieve the automatic formation of nano patterns,and the pattern formation effect is influenced by factors such as atomic interaction energy and pattern configuration.展开更多
BACKGROUND There is an intimate crosstalk between cancer formation,dissemination,treatment response and the host immune system,with inducing tumour cell death the ultimate therapeutic goal for most anti-cancer treatme...BACKGROUND There is an intimate crosstalk between cancer formation,dissemination,treatment response and the host immune system,with inducing tumour cell death the ultimate therapeutic goal for most anti-cancer treatments.However,inducing a purposeful synergistic response between conventional therapies and the immune system remains evasive.The release of damage associated molecular patterns(DAMPs)is indicative of immunogenic cell death and propagation of established immune responses.However,there is a gap in the literature regarding the importance of DAMP expression in oesophageal adenocarcinoma(OAC)or by immune cells themselves.AIM To investigate the effects of conventional therapies on DAMP expression and to determine whether OAC is an immunogenic cancer.METHODS We investigated the levels of immunogenic cell death-associated DAMPs,calreticulin(CRT)and HMGB1 using an OAC isogenic model of radioresistance.DAMP expression was also assessed directly using ex vivo cancer patient T cells(n=10)and within tumour biopsies(n=9)both pre and post-treatment with clinically relevant chemo(radio)therapeutics.RESULTS Hypoxia in combination with nutrient deprivation significantly reduces DAMP expression by OAC cells in vitro.Significantly increased frequencies of T cell DAMP expression in OAC patients were observed following chemo-(radio)therapy,which was significantly higher in tumour tissue compared with peripheral blood.Patients with high expression of HMGB1 had a significantly better tumour regression grade(TRG 1-2)compared to low expressors.CONCLUSION In conclusion,OAC expresses an immunogenic phenotype with two distinct subgroups of high and low DAMP expressors,which correlated with tumour regression grade and lymphatic invasion.It also identifies DAMPs namely CRT and HMGB1 as potential promising biomarkers in predicting good pathological responses to conventional chemo(radio)therapies currently used in the multimodal management of locally advanced disease.展开更多
A turbot(Scophthalmus maximus)cell line named SMSP was obtained from the spleen.The origin of the cells was identified by morphology,chromosome number and COI gene.The optimal basic medium,serum concentration and grow...A turbot(Scophthalmus maximus)cell line named SMSP was obtained from the spleen.The origin of the cells was identified by morphology,chromosome number and COI gene.The optimal basic medium,serum concentration and growth temperature of the cells were detected.SMSP cell line is mainly composed of fibroblast-like cells.Most of the SMSP cells contained 44 chromosomes,and the sequence of COI gene confirmed that the cells were originated from turbot.The optimal culture conditions were 24℃,DMEM+10%FBS.The cell line had high transfection efficiency for siRNA and plasmid.After stimulation with lipopolysaccharide(LPS)or poly(I:C),the expressions of immune-related genes such as TNF-β,IL-12s,IL-10 and IL-1βwere up-regulated significantly in the early stage(P<0.05).This study will provide a model for exploring immune mechanism of turbot against pathogen in vitro.展开更多
BACKGROUND Cholangiocarcinoma or biliary tract cancer has a high mortality rate resulting from late presentation and ineffective treatment strategy. Since immunotherapy by dendritic cells (DC) may be beneficial for ch...BACKGROUND Cholangiocarcinoma or biliary tract cancer has a high mortality rate resulting from late presentation and ineffective treatment strategy. Since immunotherapy by dendritic cells (DC) may be beneficial for cholangiocarcinoma treatment but their efficacy against cholangiocarcinoma was low. We suggest how such antitumor activity can be increased using cell lysates derived from an honokioltreated cholangiocarcinoma cell line (KKU-213L5). AIM To increase antitumour activity of DCs pulsed with cell lysates derived from honokiol-treated cholangiocarcinoma cell line (KKU-213L5). METHODS The effect of honokiol, a phenolic compound isolated from Magnolia officinalis, on choangiocarcinoma cells was investigated in terms of the cytotoxicity and the expression of damage-associated molecular patterns (DAMPs). DCs were loaded with tumour cell lysates derived from honokiol-treated cholangiocarcinoma cells their efficacy including induction of T lymphocyte proliferation, proinflammatory cytokine production and cytotoxicity effect on target cholangiocarcinoma cells were evaluated. RESULTS Honokiol can effectively activate cholangiocarcinoma apoptosis and increase the release of damage-associated molecular patterns. DCs loaded with cell lysates derived from honokiol-treated tumour cells enhanced priming and stimulated T lymphocyte proliferation and type I cytokine production. T lymphocytes stimulated with DCs pulsed with cell lysates of honokiol-treated tumour cells significantly increased specific killing of human cholangiocarcinoma cells compared to those associated with DCs pulsed with cell lysates of untreated cholangiocarcinoma cells. CONCLUSION The present findings suggested that honokiol was able to enhance the immunogenicity of cholangiocarcinoma cells associated with increased effectiveness of DC-based vaccine formulation. Treatment of tumour cells with honokiol offers a promising approach as an ex vivo DC-based anticancer vaccine.展开更多
BACKGROUND Periodontitis is a chronic inflammation of periodontal supporting tissue caused by local factors. Periodontal surgery can change the gene expression of peripheral blood mononuclear cells. However, little is...BACKGROUND Periodontitis is a chronic inflammation of periodontal supporting tissue caused by local factors. Periodontal surgery can change the gene expression of peripheral blood mononuclear cells. However, little is known about the potential mechanism of surgical treatment for periodontitis. AIM To explore the potential molecular mechanism of surgical treatment for periodontitis. METHODS First, based on the expression profiles of genes related to surgical treatment for periodontitis, a set of expression disorder modules related to surgical treatment for periodontitis were obtained by enrichment analysis. Subsequently, based on crosstalk analysis, we proved that there was a significant crosstalk relationship between module 3 and module 5. Finally, based on predictive analysis of multidimensional regulators, we identified a series of regulatory factors, such as endogenous genes, non-coding RNAs (ncRNAs), and transcription factors, which have potential regulatory effects on periodontitis. RESULTS A total of 337 genes related to surgical treatment for periodontitis were obtained, and 3896 genes related to periodontitis were amplified. Eight expression modules of periodontitis were obtained, involving the aggregation of 2672 gene modules. These modules are mainly involved in G-protein coupled receptor signaling pathway, coupled to cyclic nucleotide second messenger, and adenylate cyclasemodulating G-protein coupled receptor signaling pathway. In addition, eight endogenous genes (including EGF, RPS27A, and GNB3) were screened by network connectivity analysis. Finally, based on this set of potential dysfunction modules, 94 transcription factors (including NFKB1, SP1, and STAT3) and 1198 ncRNAs (including MALAT1, CRNDE, and ANCR) were revealed. These core regulators are thought to be involved in the potential molecular mechanism of periodontitis after surgical treatment. CONCLUSION Based on the results of this study, we can show biologists and pharmacists a new idea to reveal the potential molecular mechanism of surgical treatment for periodontitis, and provide valuable reference for follow-up treatment programs.展开更多
The chronic inflammatory process underlying inflammatory bowel disease (IBD), comprising Crohn's disease and ulcerative colitis, derives from the interplay of several components in a genetically susceptible host. ...The chronic inflammatory process underlying inflammatory bowel disease (IBD), comprising Crohn's disease and ulcerative colitis, derives from the interplay of several components in a genetically susceptible host. These components include environmental elements and gut microbiota a dysbiosis. For decades, immune abnormalities have been investigated as critically important in IBD pathogenesis, and attempts to develop effective therapies have predominantly targeted the immune system. Nevertheless, immune events represent only one of the constituents contributing to IBD pathogenesis within the context of the complex cellular and molecular network underlying chronic intestinal inflammation. These factors need to be appreciated within the milieu of nonimmune components. Damage-associated molecular patterns (DAMPs), which are essentially endogenous stress proteins expressed or released as a result of cell or tissue damage, have been shown to act as direct proinflammatory mediators. Excessive or persistent signalling mediated by such molecules can underlie several chronic inflammatory disorders, including IBD. The release of endogenous DAMPs amplifies the inflammatory response driven by immune and non-immune cells and promotes epigenetic reprogramming in IBD.The effects determine pathologic changes,which may sustain chronic intestinal inflammation and also underlie specific disease phenotypes.In addition to highlighting the potential use of DAMPs such as calprotectin as biomarkers,research on DAMPs may reveal novel mechanistic associations in IBD pathogenesis and is expected to uncover putative therapeutic targets.展开更多
Molecular dynamics simulations are performed to study the nanoindentation models of monolayer suspended graphene and graphyne. Fullerenes are selected as indenters. Our results show that Young's modulus of monolayer-...Molecular dynamics simulations are performed to study the nanoindentation models of monolayer suspended graphene and graphyne. Fullerenes are selected as indenters. Our results show that Young's modulus of monolayer-thick graphyne is almost half of that of graphene, which is estimated to be 0.50 TPa. The mechanical properties of graphene and graphyne are different in the presence of strain. A pre-tension has an important effect on the mechanical properties of a membrane. Both the pre-tension and Young's modulus plots demonstrate index behavior. The toughness of graphyne is stronger than that of graphene due to Young's modulus magnitude. Young's moduli of graphene and graphyne are almost independent of the size ratio of indenter to membrane.展开更多
This paper develops a deep learning tool based on neural processes(NPs)called the Peri-Net-Pro,to predict the crack patterns in a moving disk and classifies them according to the classification modes with quantified u...This paper develops a deep learning tool based on neural processes(NPs)called the Peri-Net-Pro,to predict the crack patterns in a moving disk and classifies them according to the classification modes with quantified uncertainties.In particular,image classification and regression studies are conducted by means of convolutional neural networks(CNNs)and NPs.First,the amount and quality of the data are enhanced by using peridynamics to theoretically compensate for the problems of the finite element method(FEM)in generating crack pattern images.Second,case studies are conducted with the prototype microelastic brittle(PMB),linear peridynamic solid(LPS),and viscoelastic solid(VES)models obtained by using the peridynamic theory.The case studies are performed to classify the images by using CNNs and determine the suitability of the PMB,LBS,and VES models.Finally,a regression analysis is performed on the crack pattern images with NPs to predict the crack patterns.The regression analysis results confirm that the variance decreases when the number of epochs increases by using the NPs.The training results gradually improve,and the variance ranges decrease to less than 0.035.The main finding of this study is that the NPs enable accurate predictions,even with missing or insufficient training data.The results demonstrate that if the context points are set to the 10th,100th,300th,and 784th,the training information is deliberately omitted for the context points of the 10th,100th,and 300th,and the predictions are different when the context points are significantly lower.However,the comparison of the results of the 100th and 784th context points shows that the predicted results are similar because of the Gaussian processes in the NPs.Therefore,if the NPs are employed for training,the missing information of the training data can be supplemented to predict the results.展开更多
凤凰雪茶是一种药食两用植物,具有较大的应用开发价值,本研究拟采用超高效液相色谱-四极杆-飞行时间串联质谱技术(ultra performance liquid chromatography-quadrupole-time of flight tandem mass spectrometry,UPLC-Q-TOF-MS/MS)联...凤凰雪茶是一种药食两用植物,具有较大的应用开发价值,本研究拟采用超高效液相色谱-四极杆-飞行时间串联质谱技术(ultra performance liquid chromatography-quadrupole-time of flight tandem mass spectrometry,UPLC-Q-TOF-MS/MS)联和全球天然产物交互分子网络(global natural products social molecular networking,GNPS)技术对凤凰雪茶的化学成分进行快速分析鉴定。在正、负离子模式下采集质谱数据,通过软件分析、数据库匹配、对照品比对等鉴别出相应化合物,并根据MS/MS碎片的相似性创建分子网络。从凤凰雪茶中共鉴定出58个化学成分,主要包括33个黄酮类、11个酚类、4个生物碱类、3个三萜类和其他类化合物。原儿茶酸-4-葡萄糖苷、杨梅素-3-芸香糖苷、积雪草酸等32个化合物首次在葡萄科蛇葡萄属得到鉴定,并进一步探讨了各类别化合物的质谱裂解规律以及黄酮类网络节点的关联分析。本研究运用液质联用结合GNPS技术可以快速实现对凤凰雪茶的成分的系统性分析,为其探究临床应用、质量控制及药效物质基础提供参考。展开更多
文摘In order to research the feasibility of using the selective adsorption principle to achieve automatic shaping of nano patterns,in this study,using the liquid gallium as the conductive ink and graphene as the printing plate surface,by changing the surface wettability of patterned areas on the nanoscale of graphene printed boards,the automatic formation of liquid gallium patterns on the graphene printed plate surface was simulated.The results indicated that liquid gallium can achieve automatic patterning on the surface of graphene patterned areas;the greater the interaction energy between gallium and carbon atoms,the clearer the pattern;gallium liquid is prone to remain in complex local positions of the pattern,making it difficult to shape the pattern;if the spacing between adjacent pattern lines is too large or too small,it will result in residual gallium liquid between the lines;increasing the thickness of the gallium film will cause the pattern to expand beyond the boundary,but increasing the thickness of the gallium film can also enhance the thickness and uniformity of the pattern lines.In summary,the principle of selective adsorption can be used to achieve the automatic formation of nano patterns,and the pattern formation effect is influenced by factors such as atomic interaction energy and pattern configuration.
文摘BACKGROUND There is an intimate crosstalk between cancer formation,dissemination,treatment response and the host immune system,with inducing tumour cell death the ultimate therapeutic goal for most anti-cancer treatments.However,inducing a purposeful synergistic response between conventional therapies and the immune system remains evasive.The release of damage associated molecular patterns(DAMPs)is indicative of immunogenic cell death and propagation of established immune responses.However,there is a gap in the literature regarding the importance of DAMP expression in oesophageal adenocarcinoma(OAC)or by immune cells themselves.AIM To investigate the effects of conventional therapies on DAMP expression and to determine whether OAC is an immunogenic cancer.METHODS We investigated the levels of immunogenic cell death-associated DAMPs,calreticulin(CRT)and HMGB1 using an OAC isogenic model of radioresistance.DAMP expression was also assessed directly using ex vivo cancer patient T cells(n=10)and within tumour biopsies(n=9)both pre and post-treatment with clinically relevant chemo(radio)therapeutics.RESULTS Hypoxia in combination with nutrient deprivation significantly reduces DAMP expression by OAC cells in vitro.Significantly increased frequencies of T cell DAMP expression in OAC patients were observed following chemo-(radio)therapy,which was significantly higher in tumour tissue compared with peripheral blood.Patients with high expression of HMGB1 had a significantly better tumour regression grade(TRG 1-2)compared to low expressors.CONCLUSION In conclusion,OAC expresses an immunogenic phenotype with two distinct subgroups of high and low DAMP expressors,which correlated with tumour regression grade and lymphatic invasion.It also identifies DAMPs namely CRT and HMGB1 as potential promising biomarkers in predicting good pathological responses to conventional chemo(radio)therapies currently used in the multimodal management of locally advanced disease.
基金the National Natural Science Foundation of China(No.31902403)the Young Experts of Taishan Scholars(No.tsqn201909130)+2 种基金the advanced Talents Foundation of QAU grant(No.663-1120029)the Shandong Technical System of Fish Industry(No.SDAIT-12-03)the Breeding Plan of Shandong Provincial Qingchuang Research Team(2019),China。
文摘A turbot(Scophthalmus maximus)cell line named SMSP was obtained from the spleen.The origin of the cells was identified by morphology,chromosome number and COI gene.The optimal basic medium,serum concentration and growth temperature of the cells were detected.SMSP cell line is mainly composed of fibroblast-like cells.Most of the SMSP cells contained 44 chromosomes,and the sequence of COI gene confirmed that the cells were originated from turbot.The optimal culture conditions were 24℃,DMEM+10%FBS.The cell line had high transfection efficiency for siRNA and plasmid.After stimulation with lipopolysaccharide(LPS)or poly(I:C),the expressions of immune-related genes such as TNF-β,IL-12s,IL-10 and IL-1βwere up-regulated significantly in the early stage(P<0.05).This study will provide a model for exploring immune mechanism of turbot against pathogen in vitro.
基金the grant from the Thailand Research Fund,No.BRG6180010Naresuan University Research Grant,No.R2561B001
文摘BACKGROUND Cholangiocarcinoma or biliary tract cancer has a high mortality rate resulting from late presentation and ineffective treatment strategy. Since immunotherapy by dendritic cells (DC) may be beneficial for cholangiocarcinoma treatment but their efficacy against cholangiocarcinoma was low. We suggest how such antitumor activity can be increased using cell lysates derived from an honokioltreated cholangiocarcinoma cell line (KKU-213L5). AIM To increase antitumour activity of DCs pulsed with cell lysates derived from honokiol-treated cholangiocarcinoma cell line (KKU-213L5). METHODS The effect of honokiol, a phenolic compound isolated from Magnolia officinalis, on choangiocarcinoma cells was investigated in terms of the cytotoxicity and the expression of damage-associated molecular patterns (DAMPs). DCs were loaded with tumour cell lysates derived from honokiol-treated cholangiocarcinoma cells their efficacy including induction of T lymphocyte proliferation, proinflammatory cytokine production and cytotoxicity effect on target cholangiocarcinoma cells were evaluated. RESULTS Honokiol can effectively activate cholangiocarcinoma apoptosis and increase the release of damage-associated molecular patterns. DCs loaded with cell lysates derived from honokiol-treated tumour cells enhanced priming and stimulated T lymphocyte proliferation and type I cytokine production. T lymphocytes stimulated with DCs pulsed with cell lysates of honokiol-treated tumour cells significantly increased specific killing of human cholangiocarcinoma cells compared to those associated with DCs pulsed with cell lysates of untreated cholangiocarcinoma cells. CONCLUSION The present findings suggested that honokiol was able to enhance the immunogenicity of cholangiocarcinoma cells associated with increased effectiveness of DC-based vaccine formulation. Treatment of tumour cells with honokiol offers a promising approach as an ex vivo DC-based anticancer vaccine.
文摘BACKGROUND Periodontitis is a chronic inflammation of periodontal supporting tissue caused by local factors. Periodontal surgery can change the gene expression of peripheral blood mononuclear cells. However, little is known about the potential mechanism of surgical treatment for periodontitis. AIM To explore the potential molecular mechanism of surgical treatment for periodontitis. METHODS First, based on the expression profiles of genes related to surgical treatment for periodontitis, a set of expression disorder modules related to surgical treatment for periodontitis were obtained by enrichment analysis. Subsequently, based on crosstalk analysis, we proved that there was a significant crosstalk relationship between module 3 and module 5. Finally, based on predictive analysis of multidimensional regulators, we identified a series of regulatory factors, such as endogenous genes, non-coding RNAs (ncRNAs), and transcription factors, which have potential regulatory effects on periodontitis. RESULTS A total of 337 genes related to surgical treatment for periodontitis were obtained, and 3896 genes related to periodontitis were amplified. Eight expression modules of periodontitis were obtained, involving the aggregation of 2672 gene modules. These modules are mainly involved in G-protein coupled receptor signaling pathway, coupled to cyclic nucleotide second messenger, and adenylate cyclasemodulating G-protein coupled receptor signaling pathway. In addition, eight endogenous genes (including EGF, RPS27A, and GNB3) were screened by network connectivity analysis. Finally, based on this set of potential dysfunction modules, 94 transcription factors (including NFKB1, SP1, and STAT3) and 1198 ncRNAs (including MALAT1, CRNDE, and ANCR) were revealed. These core regulators are thought to be involved in the potential molecular mechanism of periodontitis after surgical treatment. CONCLUSION Based on the results of this study, we can show biologists and pharmacists a new idea to reveal the potential molecular mechanism of surgical treatment for periodontitis, and provide valuable reference for follow-up treatment programs.
基金Supported by the Brazilian research foundations Fundacao de Amparo à Pesquisa do Estado do Rio de Janeiro--FAPERJ,No.E26/202.781/2017Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq,No.302401/2016-4
文摘The chronic inflammatory process underlying inflammatory bowel disease (IBD), comprising Crohn's disease and ulcerative colitis, derives from the interplay of several components in a genetically susceptible host. These components include environmental elements and gut microbiota a dysbiosis. For decades, immune abnormalities have been investigated as critically important in IBD pathogenesis, and attempts to develop effective therapies have predominantly targeted the immune system. Nevertheless, immune events represent only one of the constituents contributing to IBD pathogenesis within the context of the complex cellular and molecular network underlying chronic intestinal inflammation. These factors need to be appreciated within the milieu of nonimmune components. Damage-associated molecular patterns (DAMPs), which are essentially endogenous stress proteins expressed or released as a result of cell or tissue damage, have been shown to act as direct proinflammatory mediators. Excessive or persistent signalling mediated by such molecules can underlie several chronic inflammatory disorders, including IBD. The release of endogenous DAMPs amplifies the inflammatory response driven by immune and non-immune cells and promotes epigenetic reprogramming in IBD.The effects determine pathologic changes,which may sustain chronic intestinal inflammation and also underlie specific disease phenotypes.In addition to highlighting the potential use of DAMPs such as calprotectin as biomarkers,research on DAMPs may reveal novel mechanistic associations in IBD pathogenesis and is expected to uncover putative therapeutic targets.
基金Supported by the National Natural Science Foundation of China under Grant No 11274262the Natural Science Foundation of Hunan Province under Grand No 14JJ2046the Program for Changjiang Scholars and Innovative Research Team in Universities under Grant No IRT13093
文摘Molecular dynamics simulations are performed to study the nanoindentation models of monolayer suspended graphene and graphyne. Fullerenes are selected as indenters. Our results show that Young's modulus of monolayer-thick graphyne is almost half of that of graphene, which is estimated to be 0.50 TPa. The mechanical properties of graphene and graphyne are different in the presence of strain. A pre-tension has an important effect on the mechanical properties of a membrane. Both the pre-tension and Young's modulus plots demonstrate index behavior. The toughness of graphyne is stronger than that of graphene due to Young's modulus magnitude. Young's moduli of graphene and graphyne are almost independent of the size ratio of indenter to membrane.
基金Project supported by the National Science Foundation of U.S.A.(Nos.DMS-1555072,DMS-2053746DMS-2134209)+1 种基金the Brookhaven National Laboratory of U.S.A.(No.382247)U.S.Department of Energy(DOE)Office of Science Advanced Scientific Computing Research Program(Nos.DESC0021142 and DE-SC0023161)。
文摘This paper develops a deep learning tool based on neural processes(NPs)called the Peri-Net-Pro,to predict the crack patterns in a moving disk and classifies them according to the classification modes with quantified uncertainties.In particular,image classification and regression studies are conducted by means of convolutional neural networks(CNNs)and NPs.First,the amount and quality of the data are enhanced by using peridynamics to theoretically compensate for the problems of the finite element method(FEM)in generating crack pattern images.Second,case studies are conducted with the prototype microelastic brittle(PMB),linear peridynamic solid(LPS),and viscoelastic solid(VES)models obtained by using the peridynamic theory.The case studies are performed to classify the images by using CNNs and determine the suitability of the PMB,LBS,and VES models.Finally,a regression analysis is performed on the crack pattern images with NPs to predict the crack patterns.The regression analysis results confirm that the variance decreases when the number of epochs increases by using the NPs.The training results gradually improve,and the variance ranges decrease to less than 0.035.The main finding of this study is that the NPs enable accurate predictions,even with missing or insufficient training data.The results demonstrate that if the context points are set to the 10th,100th,300th,and 784th,the training information is deliberately omitted for the context points of the 10th,100th,and 300th,and the predictions are different when the context points are significantly lower.However,the comparison of the results of the 100th and 784th context points shows that the predicted results are similar because of the Gaussian processes in the NPs.Therefore,if the NPs are employed for training,the missing information of the training data can be supplemented to predict the results.
文摘凤凰雪茶是一种药食两用植物,具有较大的应用开发价值,本研究拟采用超高效液相色谱-四极杆-飞行时间串联质谱技术(ultra performance liquid chromatography-quadrupole-time of flight tandem mass spectrometry,UPLC-Q-TOF-MS/MS)联和全球天然产物交互分子网络(global natural products social molecular networking,GNPS)技术对凤凰雪茶的化学成分进行快速分析鉴定。在正、负离子模式下采集质谱数据,通过软件分析、数据库匹配、对照品比对等鉴别出相应化合物,并根据MS/MS碎片的相似性创建分子网络。从凤凰雪茶中共鉴定出58个化学成分,主要包括33个黄酮类、11个酚类、4个生物碱类、3个三萜类和其他类化合物。原儿茶酸-4-葡萄糖苷、杨梅素-3-芸香糖苷、积雪草酸等32个化合物首次在葡萄科蛇葡萄属得到鉴定,并进一步探讨了各类别化合物的质谱裂解规律以及黄酮类网络节点的关联分析。本研究运用液质联用结合GNPS技术可以快速实现对凤凰雪茶的成分的系统性分析,为其探究临床应用、质量控制及药效物质基础提供参考。