期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Small holes,big impact:Stomata in plant–pathogen–climate epic trifecta
1
作者 Shuguo Hou Olivier Rodrigues +2 位作者 Zunyong Liu Libo Shan Ping He 《Molecular Plant》 SCIE CSCD 2024年第1期26-49,共24页
The regulation of stomatal aperture opening and closure represents an evolutionary battle between plants and pathogens,characterized by adaptive strategies that influence both plant resistance and pathogen virulence.T... The regulation of stomatal aperture opening and closure represents an evolutionary battle between plants and pathogens,characterized by adaptive strategies that influence both plant resistance and pathogen virulence.The ongoing climate change introduces further complexity,affecting pathogen invasion and host immunity.This review delves into recent advances on our understanding of the mechanisms governing immunity-related stomatal movement and patterning with an emphasis on the regulation of stomatal opening and closure dynamics by pathogen patterns and host phytocytokines.In addition,the review explores how climate changes impact plant–pathogen interactions by modulating stomatal behavior.In light of the pressing challenges associated with food security and the unpredictable nature of climate changes,future research in this field,which includes the investigation of spatiotemporal regulation and engineering of stomatal immunity,emerges as a promising avenue for enhancing crop resilience and contributing to climate control strategies. 展开更多
关键词 stomatal movement stomatal patterning plant resistance pathogen virulence apoplastic immunity and climate change
原文传递
New insights in the battle between wheat and Puccinia striiformis 被引量:1
2
作者 Chunlei TANG Xiaojie WANG +4 位作者 Yulin CHENG Minjie LIU Mengxin ZHAO Jinping WEI Zhensheng KANG 《Frontiers of Agricultural Science and Engineering》 2015年第2期101-114,共14页
Wheat stripe rust caused by Puccinia striiformis f.sp.tritici(Pst)poses a great threat to wheat production worldwide.The rapid change in virulence of Pst leads to a loss of resistance in currently resistant wheat cult... Wheat stripe rust caused by Puccinia striiformis f.sp.tritici(Pst)poses a great threat to wheat production worldwide.The rapid change in virulence of Pst leads to a loss of resistance in currently resistant wheat cultivars,which results in frequent disease epidemics.Therefore,a major focus is currently placed on investigating the molecular mechanisms underlying this rapid variation of pathogenicity and coevolving wheat resistance.Limited by the lack of a system for stable transformation of Pst and the difficulties in wheat transformation,it is not easy to generate deeper insights into the wheat-Pst interaction using established genetic methods.Nevertheless,considerable effort has been made to unravel the wheat-Pst interaction and significant progress is being made.Histology and cytology have revealed basic details of infection strategies and defense responses during wheat-Pst interactions,identified cellular components involved in wheat-Pst interactions,and have helped to elucidate their role in the infection process or in plant defense responses.Transcriptome and genome sequencing has revealed the molecular features and dynamics of the wheat-Pst pathosystem.Extensive molecular analyses have led to the identification of major components in the wheat resistance response and in Pst virulence.Studies of wheat-Pst interactions have now entered a new phase in which cellular and molecular approaches are being used.This review focuses on the cellular biology of wheat-Pst interactions and integrates the emerging data from molecular analyses with the histocytological observations. 展开更多
关键词 WHEAT strip rust Puccinia striiformis f.sp.tritici host defense pathogen virulence biotrophic fungus
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部