This is the second part(also the main part) of the papers with the same title.Here we will discuss the existence and uniqueness theorem for the quasi-linear SEE(Stochastic equation of evolution).We will also discuss a...This is the second part(also the main part) of the papers with the same title.Here we will discuss the existence and uniqueness theorem for the quasi-linear SEE(Stochastic equation of evolution).We will also discuss an aproximation theorem展开更多
In this paper we prove the pathwise uniqueness of a kind of two-parameter Volterra type stochastic differential equations under the coefficients satisfy the non-Lipschitz conditions. We use a martingale formula in ste...In this paper we prove the pathwise uniqueness of a kind of two-parameter Volterra type stochastic differential equations under the coefficients satisfy the non-Lipschitz conditions. We use a martingale formula in stead of Ito formula, which leads to simplicity the process of proof and extends the result to unbounded coefficients case.展开更多
This is the third part of the papers with the same title. We will discuss the problem of convergence of the semi-implicit difference scheme for a class of quasilinear SEE, which generalize the Crandall's work to t...This is the third part of the papers with the same title. We will discuss the problem of convergence of the semi-implicit difference scheme for a class of quasilinear SEE, which generalize the Crandall's work to the stochastic case.展开更多
In this paper, we are concerned with the problem of the pathwise uniqueness of one-dimensional reflected stochastic differential equations with jumps under the assumption of non-Lipschitz continuous coefficients whose...In this paper, we are concerned with the problem of the pathwise uniqueness of one-dimensional reflected stochastic differential equations with jumps under the assumption of non-Lipschitz continuous coefficients whose proof are based on the technique of local time.展开更多
This paper addresses the estimation problem of an unknown drift parameter matrix for a fractional Ornstein-Uhlenbeck process in a multi-dimensional setting.To tackle this problem,we propose a novel approach based on r...This paper addresses the estimation problem of an unknown drift parameter matrix for a fractional Ornstein-Uhlenbeck process in a multi-dimensional setting.To tackle this problem,we propose a novel approach based on rough path theory that allows us to construct pathwise rough path estimators from both continuous and discrete observations of a single path.Our approach is particularly suitable for high-frequency data.To formulate the parameter estimators,we introduce a theory of pathwise Itôintegrals with respect to fractional Brownian motion.By establishing the regularity of fractional Ornstein-Uhlenbeck processes and analyzing the long-term behavior of the associated Lévy area processes,we demonstrate that our estimators are strongly consistent and pathwise stable.Our findings offer a new perspective on estimating the drift parameter matrix for fractional Ornstein-Uhlenbeck processes in multi-dimensional settings,and may have practical implications for fields including finance,economics,and engineering.展开更多
文摘This is the second part(also the main part) of the papers with the same title.Here we will discuss the existence and uniqueness theorem for the quasi-linear SEE(Stochastic equation of evolution).We will also discuss an aproximation theorem
基金Foundation item: Hubei University Youngth Foundations (099206).
文摘In this paper we prove the pathwise uniqueness of a kind of two-parameter Volterra type stochastic differential equations under the coefficients satisfy the non-Lipschitz conditions. We use a martingale formula in stead of Ito formula, which leads to simplicity the process of proof and extends the result to unbounded coefficients case.
基金Work supported by National Natural Science Foundation of China.
文摘This is the third part of the papers with the same title. We will discuss the problem of convergence of the semi-implicit difference scheme for a class of quasilinear SEE, which generalize the Crandall's work to the stochastic case.
基金supported by the National Natural Science Foundation of China (No.12261038, 11671408 and11871484)Natural Science Foundation of Jiangxi Province (No.20232BAB201004, 20212BAB201009)Training Program of Young Talents for academic and technical leaders of major disciplines in Jiangxi Province(No.20204BCJL23057)。
文摘In this paper, we are concerned with the problem of the pathwise uniqueness of one-dimensional reflected stochastic differential equations with jumps under the assumption of non-Lipschitz continuous coefficients whose proof are based on the technique of local time.
基金supported by Shanghai Artificial Intelligence Laboratory.
文摘This paper addresses the estimation problem of an unknown drift parameter matrix for a fractional Ornstein-Uhlenbeck process in a multi-dimensional setting.To tackle this problem,we propose a novel approach based on rough path theory that allows us to construct pathwise rough path estimators from both continuous and discrete observations of a single path.Our approach is particularly suitable for high-frequency data.To formulate the parameter estimators,we introduce a theory of pathwise Itôintegrals with respect to fractional Brownian motion.By establishing the regularity of fractional Ornstein-Uhlenbeck processes and analyzing the long-term behavior of the associated Lévy area processes,we demonstrate that our estimators are strongly consistent and pathwise stable.Our findings offer a new perspective on estimating the drift parameter matrix for fractional Ornstein-Uhlenbeck processes in multi-dimensional settings,and may have practical implications for fields including finance,economics,and engineering.
基金Supported by National Basic Research Program of China(973 Program2007CB814901)+1 种基金National Natural Science Foundation of China(10826098)Anhui Natural Science Foundation (090416225)