Using both the fermionic-kike and the bosonic-like properties of the Paulispin operators σ_+, σ_-, and σ_z we discuss the derivation of Bose description of the Pauli spinoperators originally proposed by Shigefumi N...Using both the fermionic-kike and the bosonic-like properties of the Paulispin operators σ_+, σ_-, and σ_z we discuss the derivation of Bose description of the Pauli spinoperators originally proposed by Shigefumi Naka, and deduce another new bosonic representation ofPauli operators. The related coherent states, which are nonlinear coherent state and coherent spinstates for two spins, respectively, are constructed.展开更多
A scheme of an optical quantum Fredkin gate is presented based on weak cross-Kerr nonlinearity. By an auxiliary coherent state with the cross-Kerr nonlinearity effect, photons can interact with each other indirectly, ...A scheme of an optical quantum Fredkin gate is presented based on weak cross-Kerr nonlinearity. By an auxiliary coherent state with the cross-Kerr nonlinearity effect, photons can interact with each other indirectly, and a non-demolition measurement for photons can be implemented. Combined with the homodyne detection, classical feedforward, polarization beam splitters and Pauli-X operations, a controlled-path gate is constructed. Furthermore, a quantum Fredkin gate is built based on the controlled-path gate. The proposed Fredkin gate is simple in structure and feasible by current experimental technology.展开更多
文摘Using both the fermionic-kike and the bosonic-like properties of the Paulispin operators σ_+, σ_-, and σ_z we discuss the derivation of Bose description of the Pauli spinoperators originally proposed by Shigefumi Naka, and deduce another new bosonic representation ofPauli operators. The related coherent states, which are nonlinear coherent state and coherent spinstates for two spins, respectively, are constructed.
基金supported by the National Natural Science Foundation of China(Nos.61372076 and 61301171)the Programme of Introducing Talents of Discipline to Universities(No.B08038)
文摘A scheme of an optical quantum Fredkin gate is presented based on weak cross-Kerr nonlinearity. By an auxiliary coherent state with the cross-Kerr nonlinearity effect, photons can interact with each other indirectly, and a non-demolition measurement for photons can be implemented. Combined with the homodyne detection, classical feedforward, polarization beam splitters and Pauli-X operations, a controlled-path gate is constructed. Furthermore, a quantum Fredkin gate is built based on the controlled-path gate. The proposed Fredkin gate is simple in structure and feasible by current experimental technology.