In this study,to efficiently remove Pb(Ⅱ) from aqueous environments,a novel L-serine-modified polyethylene/polypropylene nonwoven fabric sorbent(NWF-serine)was fabricated through the radiation grafting of glycidyl me...In this study,to efficiently remove Pb(Ⅱ) from aqueous environments,a novel L-serine-modified polyethylene/polypropylene nonwoven fabric sorbent(NWF-serine)was fabricated through the radiation grafting of glycidyl methacrylate and subsequent L-serine modification.The effect of the absorbed dose was investigated in the range of 5–50 kGy.NWF-serine was characterized by Fourier transform infrared spectroscopy,thermogravimetric analysis,and scanning electron microscopy.Batch adsorption tests were conducted to investigate the influences of pH,adsorption time,temperature,initial concentration,and sorbent dosage on the Pb(Ⅱ) adsorption performance of NWF-serine.The results indicated that Pb(Ⅱ) adsorption onto NWF-serine was an endothermic process,following the pseudo-second-order kinetic model and Langmuir isotherm model.The saturated adsorption capacity was 198.1 mg/g.NWF-serine exhibited Pb(Ⅱ) removal rates of 99.8% for aqueous solutions with initial concentrations of 100 mg/L and 82.1% for landfill leachate containing competitive metal ions such as Cd,Cu,Ni,Mn,and Zn.Furthermore,NWF-serine maintained 86% of its Pb(Ⅱ) uptake after five use cycles.The coordination of the carboxyl and amino groups with Pb(Ⅱ) was confirmed using X-ray photoelectron spectroscopy and extended X-ray absorption fine structure analysis.展开更多
Surface ion-imprinted in combination with sol-gel process was applied to synthesis a new Pb(Ⅱ)-imprinted polymer for selective separation and enrichment of trace Pb(Ⅱ) from aqueous solution. The prepared materia...Surface ion-imprinted in combination with sol-gel process was applied to synthesis a new Pb(Ⅱ)-imprinted polymer for selective separation and enrichment of trace Pb(Ⅱ) from aqueous solution. The prepared material was characterized by using the infrared spectra, X-ray diffractometer, and scanning electron microscopy. The batch experiments were conducted to study the optimal adsorption condition of adsorption trace Pb(Ⅱ) from aqueous solutions on Pb(Ⅱ)-imprinted polymer. The equilibrium was achieved in approximately 4,0 h, and the experimental kinetic data were fitted the pseudo second-order model better. The maximum adsorption capacity was 22.7 mg/g, and the Langmuir equation fitted the adsorption isotherm data. The results of selectivity experiment showed that selectively adsorbed rate of Pb(Ⅱ) on Pb(Ⅱ)-imprinted polymer was higher than all other studied ions. Desorption conditions of the adsorbed Pb(Ⅱ) from the Pb(Ⅱ)-imprinted polymer were also studied in batch experiments. The prepared Pb(Ⅱ)-imprinted polymer was shown to be promising for the separation and enrichment of trace Pb(Ⅱ) from water samples. The adsorption and desorption mechanisms were proposed.展开更多
The adsorption and desorption of Cu(Ⅱ) and Pb(Ⅱ) on upland red soil,and paddy soils which were originated from the upland soil and cultivated for 8,15,35 and 85 years,were investigated using the batch method.The...The adsorption and desorption of Cu(Ⅱ) and Pb(Ⅱ) on upland red soil,and paddy soils which were originated from the upland soil and cultivated for 8,15,35 and 85 years,were investigated using the batch method.The study showed that the organic matter content and cation exchange capacity (CEC) of the soils are important factors controlling the adsorption and desorption of Cu(Ⅱ) and Pb(Ⅱ).The 15-Year paddy soil had the highest adsorption capacity for Pb(Ⅱ),followed by the 35-Year paddy soil.Both the 35-Year paddy soil and 15-Year paddy soil adsorbed more Cu(Ⅱ) than the upland soil and other paddy soils.The 15-Year paddy soils exhibited the highest desorption percentage for both Cu(Ⅱ) and Pb(Ⅱ).These results are consistent with the trend for the CEC of the soils tested.The high soil CEC contributes not only to the adsorption of Cu(Ⅱ) and Pb(Ⅱ) but also to the electrostatic adsorption of the two heavy metals by the soils.Lower desorption percentages for Cu(Ⅱ) (36.7% to 42.2%) and Pb(Ⅱ) (50.4% to 57.9%) were observed for the 85-Year paddy soil.The highest content of organic matter in the soil was responsible for the low desorption percentages for the two metals because the formation of the complexes between the organic matter and the metals could increase the stability of the heavy metals in the soils.展开更多
The desorption test was conducted to evaluate the desorption behavior of Pb(Ⅱ)and Cd(Ⅱ)using citric acid.The influential factors that were considered included initial Pb(Ⅱ),Cd(Ⅱ)contamination levels in soil,concen...The desorption test was conducted to evaluate the desorption behavior of Pb(Ⅱ)and Cd(Ⅱ)using citric acid.The influential factors that were considered included initial Pb(Ⅱ),Cd(Ⅱ)contamination levels in soil,concentration of citric acid,reaction time,soil pH value and ionic strength.The test results indicated that the desorption was a rapid reaction(less than 6 h),and the removal percentages of Cd(Ⅱ)and Pb(Ⅱ)increased with the increasing contamination levels,concentration of citric acid and the addition of Na^+,Ca^(2+),Na^+, Cl~– and the chelating of organic ligands.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11605275 and 11675247)。
文摘In this study,to efficiently remove Pb(Ⅱ) from aqueous environments,a novel L-serine-modified polyethylene/polypropylene nonwoven fabric sorbent(NWF-serine)was fabricated through the radiation grafting of glycidyl methacrylate and subsequent L-serine modification.The effect of the absorbed dose was investigated in the range of 5–50 kGy.NWF-serine was characterized by Fourier transform infrared spectroscopy,thermogravimetric analysis,and scanning electron microscopy.Batch adsorption tests were conducted to investigate the influences of pH,adsorption time,temperature,initial concentration,and sorbent dosage on the Pb(Ⅱ) adsorption performance of NWF-serine.The results indicated that Pb(Ⅱ) adsorption onto NWF-serine was an endothermic process,following the pseudo-second-order kinetic model and Langmuir isotherm model.The saturated adsorption capacity was 198.1 mg/g.NWF-serine exhibited Pb(Ⅱ) removal rates of 99.8% for aqueous solutions with initial concentrations of 100 mg/L and 82.1% for landfill leachate containing competitive metal ions such as Cd,Cu,Ni,Mn,and Zn.Furthermore,NWF-serine maintained 86% of its Pb(Ⅱ) uptake after five use cycles.The coordination of the carboxyl and amino groups with Pb(Ⅱ) was confirmed using X-ray photoelectron spectroscopy and extended X-ray absorption fine structure analysis.
基金supported by the National Natural Science Foundation of China (No. 20877036)
文摘Surface ion-imprinted in combination with sol-gel process was applied to synthesis a new Pb(Ⅱ)-imprinted polymer for selective separation and enrichment of trace Pb(Ⅱ) from aqueous solution. The prepared material was characterized by using the infrared spectra, X-ray diffractometer, and scanning electron microscopy. The batch experiments were conducted to study the optimal adsorption condition of adsorption trace Pb(Ⅱ) from aqueous solutions on Pb(Ⅱ)-imprinted polymer. The equilibrium was achieved in approximately 4,0 h, and the experimental kinetic data were fitted the pseudo second-order model better. The maximum adsorption capacity was 22.7 mg/g, and the Langmuir equation fitted the adsorption isotherm data. The results of selectivity experiment showed that selectively adsorbed rate of Pb(Ⅱ) on Pb(Ⅱ)-imprinted polymer was higher than all other studied ions. Desorption conditions of the adsorbed Pb(Ⅱ) from the Pb(Ⅱ)-imprinted polymer were also studied in batch experiments. The prepared Pb(Ⅱ)-imprinted polymer was shown to be promising for the separation and enrichment of trace Pb(Ⅱ) from water samples. The adsorption and desorption mechanisms were proposed.
基金supported by the Knowledge Innovation Program Foundation of the Chinese Academy of Sciences(No. KZCX2-YW-Q10-3,ISSASIP0713)
文摘The adsorption and desorption of Cu(Ⅱ) and Pb(Ⅱ) on upland red soil,and paddy soils which were originated from the upland soil and cultivated for 8,15,35 and 85 years,were investigated using the batch method.The study showed that the organic matter content and cation exchange capacity (CEC) of the soils are important factors controlling the adsorption and desorption of Cu(Ⅱ) and Pb(Ⅱ).The 15-Year paddy soil had the highest adsorption capacity for Pb(Ⅱ),followed by the 35-Year paddy soil.Both the 35-Year paddy soil and 15-Year paddy soil adsorbed more Cu(Ⅱ) than the upland soil and other paddy soils.The 15-Year paddy soils exhibited the highest desorption percentage for both Cu(Ⅱ) and Pb(Ⅱ).These results are consistent with the trend for the CEC of the soils tested.The high soil CEC contributes not only to the adsorption of Cu(Ⅱ) and Pb(Ⅱ) but also to the electrostatic adsorption of the two heavy metals by the soils.Lower desorption percentages for Cu(Ⅱ) (36.7% to 42.2%) and Pb(Ⅱ) (50.4% to 57.9%) were observed for the 85-Year paddy soil.The highest content of organic matter in the soil was responsible for the low desorption percentages for the two metals because the formation of the complexes between the organic matter and the metals could increase the stability of the heavy metals in the soils.
基金Projects(51708377,51678311)supported by the National Natural Science Foundation of ChinaProject(BK20170339)supported by the Natural Science Foundation of Jiangsu Province,China+6 种基金Project(2016M591756)supported by the China Postdoctoral Science FoundationProject(17KJB560008)supported by the Natural Science Fund for Colleges and Universities in Jiangsu Province,ChinaProject(1601175C)supported by the Jiangsu Planned Projects for Postdoctoral Research Funds,ChinaProject(2016ZD18)supported by the Jiangsu Provincial Department of Housing and Urban-Rural Development,ChinaProject(2016T05)supported by the Jiangsu Provincial Transport Bureau,ChinaProject(2017A610304)supported by the Natural Science Foundation of Ningbo City,ChinaProject supported by the Bureau of Housing and Urban-Rural Development of Suzhou,China
文摘The desorption test was conducted to evaluate the desorption behavior of Pb(Ⅱ)and Cd(Ⅱ)using citric acid.The influential factors that were considered included initial Pb(Ⅱ),Cd(Ⅱ)contamination levels in soil,concentration of citric acid,reaction time,soil pH value and ionic strength.The test results indicated that the desorption was a rapid reaction(less than 6 h),and the removal percentages of Cd(Ⅱ)and Pb(Ⅱ)increased with the increasing contamination levels,concentration of citric acid and the addition of Na^+,Ca^(2+),Na^+, Cl~– and the chelating of organic ligands.