In this study,to efficiently remove Pb(Ⅱ) from aqueous environments,a novel L-serine-modified polyethylene/polypropylene nonwoven fabric sorbent(NWF-serine)was fabricated through the radiation grafting of glycidyl me...In this study,to efficiently remove Pb(Ⅱ) from aqueous environments,a novel L-serine-modified polyethylene/polypropylene nonwoven fabric sorbent(NWF-serine)was fabricated through the radiation grafting of glycidyl methacrylate and subsequent L-serine modification.The effect of the absorbed dose was investigated in the range of 5–50 kGy.NWF-serine was characterized by Fourier transform infrared spectroscopy,thermogravimetric analysis,and scanning electron microscopy.Batch adsorption tests were conducted to investigate the influences of pH,adsorption time,temperature,initial concentration,and sorbent dosage on the Pb(Ⅱ) adsorption performance of NWF-serine.The results indicated that Pb(Ⅱ) adsorption onto NWF-serine was an endothermic process,following the pseudo-second-order kinetic model and Langmuir isotherm model.The saturated adsorption capacity was 198.1 mg/g.NWF-serine exhibited Pb(Ⅱ) removal rates of 99.8% for aqueous solutions with initial concentrations of 100 mg/L and 82.1% for landfill leachate containing competitive metal ions such as Cd,Cu,Ni,Mn,and Zn.Furthermore,NWF-serine maintained 86% of its Pb(Ⅱ) uptake after five use cycles.The coordination of the carboxyl and amino groups with Pb(Ⅱ) was confirmed using X-ray photoelectron spectroscopy and extended X-ray absorption fine structure analysis.展开更多
Removal of trace heavy metal ions puts high demands on designing adsorbents with favorable surfaces.Crystal-plane engineering can provide controllable adsorption energy between surficial planes and adsorbents.Herein,w...Removal of trace heavy metal ions puts high demands on designing adsorbents with favorable surfaces.Crystal-plane engineering can provide controllable adsorption energy between surficial planes and adsorbents.Herein,we have creatively synthesized Mg-doped CaCO_(3)nanoarchitectures assembled by layered sheets(Mg-CaCO_(3)LSs)with high-index facets of(441)through a facile wet chemical process.Adsorption tests reveal that the layer-bylayer assembled sample exhibits a maximum Pb(II)adsorption capacity of 1961.9 mg·g^(-1),agreeing with the monolayer-adsorption Langmuir model.At an initial Pb(II)ion concentration of 20 mg·L^(-1),the adsorption can achieve a high removal rate near 99.0%within 1 min,and the adsorption kinetics follows a chemisorption pseudo-second-order model.Interestingly,the Mg-CaCO_(3)LSs show much-improved adsorption properties towards low-concentration Pb(II)ions,which could reduce the concentration from 1 mg·L^(-1)to~2.9μg·L^(-1)in 3 h(within 30 min decrease to less than 10μg·L^(-1),meeting drinking water standard from WHO).For comparison,the commercial CaCO_(3)and collected CaCO_(3)scale show much lower adsorption values with Pb(Ⅱ)ion residual concentration of~935.0 and~944.9μg·L^(-1)in 3 h,respectively.Xray diffraction(XRD),energy dispersive spectroscopy(EDS),and inductively coupled plasma(ICP)characterizations on the Mg-CaCO_(3)LSs before and after adsorbing Pb(Ⅱ)confirm that the high removal performance could be ascribed to fast metal ion exchange and excellent physical adsorption contributed by high-index planes.The density functional theory(DFT)calculations also confirm that the much-enhanced adsorption kinetics benefits from the optimal adsorption of the(441)planes.This work will provide a feasible route to design highefficient low-cost adsorbents through crystal-plane engineering.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11605275 and 11675247)。
文摘In this study,to efficiently remove Pb(Ⅱ) from aqueous environments,a novel L-serine-modified polyethylene/polypropylene nonwoven fabric sorbent(NWF-serine)was fabricated through the radiation grafting of glycidyl methacrylate and subsequent L-serine modification.The effect of the absorbed dose was investigated in the range of 5–50 kGy.NWF-serine was characterized by Fourier transform infrared spectroscopy,thermogravimetric analysis,and scanning electron microscopy.Batch adsorption tests were conducted to investigate the influences of pH,adsorption time,temperature,initial concentration,and sorbent dosage on the Pb(Ⅱ) adsorption performance of NWF-serine.The results indicated that Pb(Ⅱ) adsorption onto NWF-serine was an endothermic process,following the pseudo-second-order kinetic model and Langmuir isotherm model.The saturated adsorption capacity was 198.1 mg/g.NWF-serine exhibited Pb(Ⅱ) removal rates of 99.8% for aqueous solutions with initial concentrations of 100 mg/L and 82.1% for landfill leachate containing competitive metal ions such as Cd,Cu,Ni,Mn,and Zn.Furthermore,NWF-serine maintained 86% of its Pb(Ⅱ) uptake after five use cycles.The coordination of the carboxyl and amino groups with Pb(Ⅱ) was confirmed using X-ray photoelectron spectroscopy and extended X-ray absorption fine structure analysis.
基金financially supported by the National Natural Science Foundation of China(Nos.51438011,51102005)the Academic Excellence Foundation of BUAA for Ph.D.students。
文摘Removal of trace heavy metal ions puts high demands on designing adsorbents with favorable surfaces.Crystal-plane engineering can provide controllable adsorption energy between surficial planes and adsorbents.Herein,we have creatively synthesized Mg-doped CaCO_(3)nanoarchitectures assembled by layered sheets(Mg-CaCO_(3)LSs)with high-index facets of(441)through a facile wet chemical process.Adsorption tests reveal that the layer-bylayer assembled sample exhibits a maximum Pb(II)adsorption capacity of 1961.9 mg·g^(-1),agreeing with the monolayer-adsorption Langmuir model.At an initial Pb(II)ion concentration of 20 mg·L^(-1),the adsorption can achieve a high removal rate near 99.0%within 1 min,and the adsorption kinetics follows a chemisorption pseudo-second-order model.Interestingly,the Mg-CaCO_(3)LSs show much-improved adsorption properties towards low-concentration Pb(II)ions,which could reduce the concentration from 1 mg·L^(-1)to~2.9μg·L^(-1)in 3 h(within 30 min decrease to less than 10μg·L^(-1),meeting drinking water standard from WHO).For comparison,the commercial CaCO_(3)and collected CaCO_(3)scale show much lower adsorption values with Pb(Ⅱ)ion residual concentration of~935.0 and~944.9μg·L^(-1)in 3 h,respectively.Xray diffraction(XRD),energy dispersive spectroscopy(EDS),and inductively coupled plasma(ICP)characterizations on the Mg-CaCO_(3)LSs before and after adsorbing Pb(Ⅱ)confirm that the high removal performance could be ascribed to fast metal ion exchange and excellent physical adsorption contributed by high-index planes.The density functional theory(DFT)calculations also confirm that the much-enhanced adsorption kinetics benefits from the optimal adsorption of the(441)planes.This work will provide a feasible route to design highefficient low-cost adsorbents through crystal-plane engineering.