The effects of Bi addition on the growth of intermetallic compound (IMC) formation in Sn-3.8Ag-0.7Cu solder joints were investigated. The test samples were prepared by conventional surface mounting technology. To inve...The effects of Bi addition on the growth of intermetallic compound (IMC) formation in Sn-3.8Ag-0.7Cu solder joints were investigated. The test samples were prepared by conventional surface mounting technology. To investigate the element diffusion and the growth kinetics of intermetallics formation in solder joint, isothermal aging test was performed at temperatures of 100, 150, and 190℃, respectively. The optical microscope (OM) and scanning electron microscope (SEM) were used to observe microstructure evolution of solder joint and to estimate the thickness and the grain size of the intermetallic layers. The IMC phases were identified by energy dispersive X-ray (EDX) and X-ray diffractometer (XRD). The results clearly show that adding about 1.0% Bi in Sn-Ag-Cu solder alloy system can refine the grain size of the IMC and inhibit the excessive IMC growth in solder joints, and therefore improve the reliability of the Pb-free solder joints. Through observation of the microstructural evolution of the solder joints, the mechanism of inhibition of IMC growth due to Bi addition was proposed.展开更多
Lap joints with a 1 mm^2 cross-sectional area were fabricated using Cu particle enhancemem 63Sn37Pb based composite solder and 63Sn37Pb eutectic solder to examine the influence of stress on the creep behavior of the s...Lap joints with a 1 mm^2 cross-sectional area were fabricated using Cu particle enhancemem 63Sn37Pb based composite solder and 63Sn37Pb eutectic solder to examine the influence of stress on the creep behavior of the solder joints. The results indicate that the creep resistance of the composite solder joints is generally superior to that of the conventional 63Sn37Pb solder joints. At the same time, the creep rupture life of the composite solder joints is declined with increasing stress and drops faster than that of the 63Sn37Pb eutectic solder joints.展开更多
The plastic deformation of solder joint depends on the plastic deformation resistance of solder. The studyon plastic deformation resistance of Sn-Pb-RE solder at room temperature shows that with the increase 0f RE con...The plastic deformation of solder joint depends on the plastic deformation resistance of solder. The studyon plastic deformation resistance of Sn-Pb-RE solder at room temperature shows that with the increase 0f RE content, theplastic deformation resistance of Sn-Pb-RE solder enhances. The microstructure investigation reveals'that the addition ofRE makes the microstructure of solder fine and homogeneous, which enhances hwher hardening and multi-sliding hardening. Moreover, RE on grain boundaries hinders the grain boundary sliding. Therefore, the deformation resistance ofsolder enhances. However, since it is very hard, the intermetallic compounds of RE near fracture surface will cause intergranular cracks around it.展开更多
Magnesium and aluminum alloys are widely used in various industries because of their excellent properties,and their reliable connection may increase application of materials.Intermetallic compounds(IMCs)affect the joi...Magnesium and aluminum alloys are widely used in various industries because of their excellent properties,and their reliable connection may increase application of materials.Intermetallic compounds(IMCs)affect the joint performance of Mg/Al.In this study,AZ31 Mg alloy with/without a nickel(Ni)coating layer and 6061 Al alloy were joined by ultrasonic-assisted soldering with Sn-3.0Ag-0.5Cu(SAC)filler.The effects of the Ni coating layer on the microstructure and mechanical properties of Mg/Al joints were systematically investigated.The Ni coating layer had a significant effect on formation of the Mg_(2)Sn IMC and the mechanical properties of Mg/Al joints.The blocky Mg_(2)Sn IMC formed in the Mg/SAC/Al joints without a Ni coating layer.The content of the Mg_(2)Sn IMC increased with increasing soldering temperature,but the joint strength decreased.The joint without a Ni coating layer fractured at the blocky Mg_(2)Sn IMC in the solder,and the maximum shear strength was 32.2 MPa.By pre-plating Ni on the Mg substrate,formation of the blocky Mg_(2)Sn IMC was inhibited in the soldering temperature range 240–280℃and the joint strength increased.However,when the soldering temperature increased to 310℃,the blocky Mg_(2)Sn IMC precipitated again in the solder.Transmission electron microscopy showed that some nano-sized Mg_(2)Sn IMC and the(Cu,Ni)_(6)Sn_(5)phase formed in the Mg(Ni)/SAC/Al joint soldered at 280℃,indicating that the Ni coating layer could no longer prevent diffusion of Mg into the solder when the soldering temperature was higher than 280℃.The maximum shear strength of the Mg(Ni)/SAC/Al joint was 58.2 MPa for a soldering temperature of 280℃,which was 80.7%higher than that of the Mg/SAC/Al joint,and the joint was broken at the Mg(Ni)/SAC interface.Pre-plating Ni is a feasible way to inhibit formation of IMCs when joining dissimilar metals.展开更多
The solder joint strength of Pb/Sn soldering aluminum with electroless layer Sn/Bi and Cu was studied. The results show that the joint shear strength of electroless Sn/Bi on aluminum surface is lower than that of Cu. ...The solder joint strength of Pb/Sn soldering aluminum with electroless layer Sn/Bi and Cu was studied. The results show that the joint shear strength of electroless Sn/Bi on aluminum surface is lower than that of Cu. A Pb-riched region with porosity is formed in region of soldering fillet with electroless Sn/Bi. Both the electroless Sn/Bi layer and Pb-riched layer become thicker, which are the reasons why the shear strength of the solder joint with electroless Sn/Bi on aluminum surface is lower than that of electroless Cu, and the higher the thickness of the electroless Sn/Bi layer is, the lower the shear strength of solder joint is.展开更多
Specimens of Sn-Pb-0.05RE solder alloy were tested to failure under two different stress states,uniaxial tension using smooth bar specimens and triaxial tension using notched bar specimens. The tests were conducted at...Specimens of Sn-Pb-0.05RE solder alloy were tested to failure under two different stress states,uniaxial tension using smooth bar specimens and triaxial tension using notched bar specimens. The tests were conducted at a temperature of 125℃, far above 0. 5 melting temperature of Sn-Pb-0.05RE solder alloy,which leads to a distinctive creep deformation. Rupture times were compared for uniaxial and triaxial stress states with respect to multiaxial stress parameters that are directly related to physical fracture mechanisms.The success of the parameters was judged according to how well the stress parameters correlate with the time to rupture. The results show that the Mises effective stress is the stress factor which dominates the creep rupture of Sn-Pb-0. 05RE solder alloy. It further suggests that the cavity nucleation on a grain boundary plays an important role in the creep rupture process of Sn-Pb-0.05RE solder alloy.展开更多
Creep property of solder alloys is one of the important factors to affect the reliabdity of soldered joints in SMT (surface mount technology). Particle-enhancement is a way to improve the properties of solder alloys...Creep property of solder alloys is one of the important factors to affect the reliabdity of soldered joints in SMT (surface mount technology). Particle-enhancement is a way to improve the properties of solder alloys and has caused much more attention than before. Temperatures applied to soldered joints are one of the primary factors of affecting creep properties of particle enhancement composite soldered joints. In this paper single shear lap creep specimens with a 1 mm^2 cross-sectional area were fabricated using Cu particle enhancement 63Sn37 Pb based composite soldered joints and 63Sn37 Pb eutectic soldered joints to examine the influence of temperature on creep behavior of soldered joints. Results indicated that the creep resistance of soldered joints of Cu particle enhancement 63Sn37Pb based composite soldered joint was generally superior to that of the conventional 63Sn37Pb soldered joint. At the same time, creep rupture life of the composite soldered joint was declined with increasing temperature and drop faster than that of the conventional 63Sn37 Pb eutectic soldered joint.展开更多
The influence of thermal cycling on the microstructure and joint strength of Sn3.5Ag0.75Cu (SAC) and Sn63Pb37 (SnPb) solder joints was investigated. SAC and SnPb solder balls were soldered on 0.1 and 0.9 μm Au fi...The influence of thermal cycling on the microstructure and joint strength of Sn3.5Ag0.75Cu (SAC) and Sn63Pb37 (SnPb) solder joints was investigated. SAC and SnPb solder balls were soldered on 0.1 and 0.9 μm Au finished metallization, respectively. After 1000 thermal cycles between -40℃ and 125℃, a very thin intermetallic compound (IMC) layer containing Au, Sn, Ni, and Cu formed at the interface between SAC solder joints and underneath metallization with 0.1 μm Au finish, and (Au, Ni, Cu)Sn4 and a very thin AuSn-Ni-Cu IMC layer formed between SAC solder joints and underneath metallization with 0.9 μm Au finish. For SnPb solder joints with 0.1 μm Au finish, a thin (Ni, Cu, Au)3Sn4 IMC layer and a Pb-rich layer formed below and above the (Au, Ni)Sn4 IMC, respectively. Cu diffused through Ni layer and was involved into the IMC formation process. Similar interfacial microstructure was also found for SnPb solder joints with 0.9μm Au finish. The results of shear test show that the shear strength of SAC solder joints is consistently higher than that of SnPb eutectic solder joints during thermal cycling.展开更多
采用实验方法 ,确定了倒装焊 Sn Pb焊点的热循环寿命 .采用粘塑性和粘弹性材料模式描述了 Sn Pb焊料和底充胶的力学行为 ,用有限元方法模拟了 Sn Pb焊点在热循环条件下的应力应变过程 .基于计算的塑性应变范围和实验的热循环寿命 ,确定...采用实验方法 ,确定了倒装焊 Sn Pb焊点的热循环寿命 .采用粘塑性和粘弹性材料模式描述了 Sn Pb焊料和底充胶的力学行为 ,用有限元方法模拟了 Sn Pb焊点在热循环条件下的应力应变过程 .基于计算的塑性应变范围和实验的热循环寿命 ,确定了倒装焊 Sn Pb焊点热循环失效 Coffin- Manson经验方程的材料参数 .研究表明 ,有底充胶倒装焊 Sn Pb焊点的塑性应变范围比无底充胶时明显减小 ,热循环寿命可提高约 2 0倍 。展开更多
通过机械合金化制备了 Al-15%Pb-4%Si-1%Sn-1.5%Cu(质量分数)纳米晶粉末。采用 X 射线衍射(XRD),扫描电镜(SEM)和透射电镜(TEM)对不同球磨时间的混合粉末的组织结构、晶粒大小、微观形貌以及颗粒中化学成分分布情况进行了研究。结果表...通过机械合金化制备了 Al-15%Pb-4%Si-1%Sn-1.5%Cu(质量分数)纳米晶粉末。采用 X 射线衍射(XRD),扫描电镜(SEM)和透射电镜(TEM)对不同球磨时间的混合粉末的组织结构、晶粒大小、微观形貌以及颗粒中化学成分分布情况进行了研究。结果表明混合粉末经过球磨后形成了纳米晶,其组织非常均匀。球磨对 Pb 的作用效果明显大于对 Al 的作用效果,经过 40 h 球磨后 Pb 粒子达到 40 nm,而 Al 在球磨 60 h 后晶粒为 65 nm;经球磨后,Cu 和 Si 固溶于 Al 的晶格中,而 Sn 则固溶于 Pb 晶格中,并且 Al 和 Pb 发生了互溶,形成了 Pb(Al)超饱和固溶体;在球磨过程中硬度高的脆性粒子 Si 难于完全实现合金化。展开更多
文摘The effects of Bi addition on the growth of intermetallic compound (IMC) formation in Sn-3.8Ag-0.7Cu solder joints were investigated. The test samples were prepared by conventional surface mounting technology. To investigate the element diffusion and the growth kinetics of intermetallics formation in solder joint, isothermal aging test was performed at temperatures of 100, 150, and 190℃, respectively. The optical microscope (OM) and scanning electron microscope (SEM) were used to observe microstructure evolution of solder joint and to estimate the thickness and the grain size of the intermetallic layers. The IMC phases were identified by energy dispersive X-ray (EDX) and X-ray diffractometer (XRD). The results clearly show that adding about 1.0% Bi in Sn-Ag-Cu solder alloy system can refine the grain size of the IMC and inhibit the excessive IMC growth in solder joints, and therefore improve the reliability of the Pb-free solder joints. Through observation of the microstructural evolution of the solder joints, the mechanism of inhibition of IMC growth due to Bi addition was proposed.
基金This study is financially supported by the Foundation of Henan University of Science & Technology(No.13420060) Luoyang Advanced Hydraulic Pressure Technology Ltd. ( 6142004).
文摘Lap joints with a 1 mm^2 cross-sectional area were fabricated using Cu particle enhancemem 63Sn37Pb based composite solder and 63Sn37Pb eutectic solder to examine the influence of stress on the creep behavior of the solder joints. The results indicate that the creep resistance of the composite solder joints is generally superior to that of the conventional 63Sn37Pb solder joints. At the same time, the creep rupture life of the composite solder joints is declined with increasing stress and drops faster than that of the 63Sn37Pb eutectic solder joints.
文摘The plastic deformation of solder joint depends on the plastic deformation resistance of solder. The studyon plastic deformation resistance of Sn-Pb-RE solder at room temperature shows that with the increase 0f RE content, theplastic deformation resistance of Sn-Pb-RE solder enhances. The microstructure investigation reveals'that the addition ofRE makes the microstructure of solder fine and homogeneous, which enhances hwher hardening and multi-sliding hardening. Moreover, RE on grain boundaries hinders the grain boundary sliding. Therefore, the deformation resistance ofsolder enhances. However, since it is very hard, the intermetallic compounds of RE near fracture surface will cause intergranular cracks around it.
基金financial support from the National Natural Science Foundation of China(grant numbers 52275385 and U2167216)the Sichuan Province Science and Technology Support Program(grant number 2022YFG0086)。
文摘Magnesium and aluminum alloys are widely used in various industries because of their excellent properties,and their reliable connection may increase application of materials.Intermetallic compounds(IMCs)affect the joint performance of Mg/Al.In this study,AZ31 Mg alloy with/without a nickel(Ni)coating layer and 6061 Al alloy were joined by ultrasonic-assisted soldering with Sn-3.0Ag-0.5Cu(SAC)filler.The effects of the Ni coating layer on the microstructure and mechanical properties of Mg/Al joints were systematically investigated.The Ni coating layer had a significant effect on formation of the Mg_(2)Sn IMC and the mechanical properties of Mg/Al joints.The blocky Mg_(2)Sn IMC formed in the Mg/SAC/Al joints without a Ni coating layer.The content of the Mg_(2)Sn IMC increased with increasing soldering temperature,but the joint strength decreased.The joint without a Ni coating layer fractured at the blocky Mg_(2)Sn IMC in the solder,and the maximum shear strength was 32.2 MPa.By pre-plating Ni on the Mg substrate,formation of the blocky Mg_(2)Sn IMC was inhibited in the soldering temperature range 240–280℃and the joint strength increased.However,when the soldering temperature increased to 310℃,the blocky Mg_(2)Sn IMC precipitated again in the solder.Transmission electron microscopy showed that some nano-sized Mg_(2)Sn IMC and the(Cu,Ni)_(6)Sn_(5)phase formed in the Mg(Ni)/SAC/Al joint soldered at 280℃,indicating that the Ni coating layer could no longer prevent diffusion of Mg into the solder when the soldering temperature was higher than 280℃.The maximum shear strength of the Mg(Ni)/SAC/Al joint was 58.2 MPa for a soldering temperature of 280℃,which was 80.7%higher than that of the Mg/SAC/Al joint,and the joint was broken at the Mg(Ni)/SAC interface.Pre-plating Ni is a feasible way to inhibit formation of IMCs when joining dissimilar metals.
文摘The solder joint strength of Pb/Sn soldering aluminum with electroless layer Sn/Bi and Cu was studied. The results show that the joint shear strength of electroless Sn/Bi on aluminum surface is lower than that of Cu. A Pb-riched region with porosity is formed in region of soldering fillet with electroless Sn/Bi. Both the electroless Sn/Bi layer and Pb-riched layer become thicker, which are the reasons why the shear strength of the solder joint with electroless Sn/Bi on aluminum surface is lower than that of electroless Cu, and the higher the thickness of the electroless Sn/Bi layer is, the lower the shear strength of solder joint is.
文摘Specimens of Sn-Pb-0.05RE solder alloy were tested to failure under two different stress states,uniaxial tension using smooth bar specimens and triaxial tension using notched bar specimens. The tests were conducted at a temperature of 125℃, far above 0. 5 melting temperature of Sn-Pb-0.05RE solder alloy,which leads to a distinctive creep deformation. Rupture times were compared for uniaxial and triaxial stress states with respect to multiaxial stress parameters that are directly related to physical fracture mechanisms.The success of the parameters was judged according to how well the stress parameters correlate with the time to rupture. The results show that the Mises effective stress is the stress factor which dominates the creep rupture of Sn-Pb-0. 05RE solder alloy. It further suggests that the cavity nucleation on a grain boundary plays an important role in the creep rupture process of Sn-Pb-0.05RE solder alloy.
文摘Creep property of solder alloys is one of the important factors to affect the reliabdity of soldered joints in SMT (surface mount technology). Particle-enhancement is a way to improve the properties of solder alloys and has caused much more attention than before. Temperatures applied to soldered joints are one of the primary factors of affecting creep properties of particle enhancement composite soldered joints. In this paper single shear lap creep specimens with a 1 mm^2 cross-sectional area were fabricated using Cu particle enhancement 63Sn37 Pb based composite soldered joints and 63Sn37 Pb eutectic soldered joints to examine the influence of temperature on creep behavior of soldered joints. Results indicated that the creep resistance of soldered joints of Cu particle enhancement 63Sn37Pb based composite soldered joint was generally superior to that of the conventional 63Sn37Pb soldered joint. At the same time, creep rupture life of the composite soldered joint was declined with increasing temperature and drop faster than that of the conventional 63Sn37 Pb eutectic soldered joint.
文摘The influence of thermal cycling on the microstructure and joint strength of Sn3.5Ag0.75Cu (SAC) and Sn63Pb37 (SnPb) solder joints was investigated. SAC and SnPb solder balls were soldered on 0.1 and 0.9 μm Au finished metallization, respectively. After 1000 thermal cycles between -40℃ and 125℃, a very thin intermetallic compound (IMC) layer containing Au, Sn, Ni, and Cu formed at the interface between SAC solder joints and underneath metallization with 0.1 μm Au finish, and (Au, Ni, Cu)Sn4 and a very thin AuSn-Ni-Cu IMC layer formed between SAC solder joints and underneath metallization with 0.9 μm Au finish. For SnPb solder joints with 0.1 μm Au finish, a thin (Ni, Cu, Au)3Sn4 IMC layer and a Pb-rich layer formed below and above the (Au, Ni)Sn4 IMC, respectively. Cu diffused through Ni layer and was involved into the IMC formation process. Similar interfacial microstructure was also found for SnPb solder joints with 0.9μm Au finish. The results of shear test show that the shear strength of SAC solder joints is consistently higher than that of SnPb eutectic solder joints during thermal cycling.
文摘采用实验方法 ,确定了倒装焊 Sn Pb焊点的热循环寿命 .采用粘塑性和粘弹性材料模式描述了 Sn Pb焊料和底充胶的力学行为 ,用有限元方法模拟了 Sn Pb焊点在热循环条件下的应力应变过程 .基于计算的塑性应变范围和实验的热循环寿命 ,确定了倒装焊 Sn Pb焊点热循环失效 Coffin- Manson经验方程的材料参数 .研究表明 ,有底充胶倒装焊 Sn Pb焊点的塑性应变范围比无底充胶时明显减小 ,热循环寿命可提高约 2 0倍 。
文摘通过机械合金化制备了 Al-15%Pb-4%Si-1%Sn-1.5%Cu(质量分数)纳米晶粉末。采用 X 射线衍射(XRD),扫描电镜(SEM)和透射电镜(TEM)对不同球磨时间的混合粉末的组织结构、晶粒大小、微观形貌以及颗粒中化学成分分布情况进行了研究。结果表明混合粉末经过球磨后形成了纳米晶,其组织非常均匀。球磨对 Pb 的作用效果明显大于对 Al 的作用效果,经过 40 h 球磨后 Pb 粒子达到 40 nm,而 Al 在球磨 60 h 后晶粒为 65 nm;经球磨后,Cu 和 Si 固溶于 Al 的晶格中,而 Sn 则固溶于 Pb 晶格中,并且 Al 和 Pb 发生了互溶,形成了 Pb(Al)超饱和固溶体;在球磨过程中硬度高的脆性粒子 Si 难于完全实现合金化。