The Yili Block in the Western Tianshan orogen is a key area for understanding the early crustal formation and evolution of the Central Asian orogenic belt,due to the widely-distributed Precambrian rocks.Also,it hosts ...The Yili Block in the Western Tianshan orogen is a key area for understanding the early crustal formation and evolution of the Central Asian orogenic belt,due to the widely-distributed Precambrian rocks.Also,it hosts a lot of medium–to large-scale sedimentary exhalative(SEDEX)Pb-Zn deposits that mainly occur in Proterozoic metamorphosed clasticcarbonate rocks.In this study,LA-ICP-MS U-Pb analyses were carried out on detrital zircons in siltstones of the Precambrian Haerdaban Group in the Haerdaban Pb-Zn deposit and magmatic zircons in the diorite dyke that cuts through the strata and orebodies.The maximum depositional age of the siltstones was determined to be about 604 Ma,the diorite having formed at approximately 500 Ma.As such,the Haerdaban Group was most likely formed in the Neoproterozoic Sinian,rather than the previously considered Mesoproterozoic Changchengian.Detrital materials of the Haerdaban Group were mostly derived from the Nanhua–Sinian mafic dykes and granitic rocks around Lake Sayram at the northern margin of the Yili Block.It is proposed that the Yili Block,together with the Kazakhstan and Central Tianshan blocks and the Tarim Craton,might all pertain to the same Rodinia supercontinent,which has great potential for targeting large to super-large SEDEX Pb-Zn deposits.展开更多
Geochemical maps are of great value in mineral exploration.Integrated geochemical anomaly maps provide comprehensive information about mapping assemblages of element concentrations to possible types of mineralization/...Geochemical maps are of great value in mineral exploration.Integrated geochemical anomaly maps provide comprehensive information about mapping assemblages of element concentrations to possible types of mineralization/ore,but vary depending on expert's knowledge and experience.This paper aims to test the capability of deep neural networks to delineate integrated anomaly based on a case study of the Zhaojikou Pb-Zn deposit,Southeast China.Three hundred fifty two samples were collected,and each sample consisted of 26 variables covering elemental composition,geological,and tectonic information.At first,generative adversarial networks were adopted for data augmentation.Then,DNN was trained on sets of synthetic and real data to identify an integrated anomaly.Finally,the results of DNN analyses were visualized in probability maps and compared with traditional anomaly maps to check its performance.Results showed that the average accuracy of the validation set was 94.76%.The probability maps showed that newly-identified integrated anomalous areas had a probability of above 75%in the northeast zones.It also showed that DNN models that used big data not only successfully recognized the anomalous areas identified on traditional geochemical element maps,but also discovered new anomalous areas,not picked up by the elemental anomaly maps previously.展开更多
基金funded by the Key Project of the National Natural Science Foundation of China(Grant No.42130804)the National Key R&D Program of China(Grant No.2018YFC0604003)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.35942019012)the State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences(Grant No.MSFGPMR201810)。
文摘The Yili Block in the Western Tianshan orogen is a key area for understanding the early crustal formation and evolution of the Central Asian orogenic belt,due to the widely-distributed Precambrian rocks.Also,it hosts a lot of medium–to large-scale sedimentary exhalative(SEDEX)Pb-Zn deposits that mainly occur in Proterozoic metamorphosed clasticcarbonate rocks.In this study,LA-ICP-MS U-Pb analyses were carried out on detrital zircons in siltstones of the Precambrian Haerdaban Group in the Haerdaban Pb-Zn deposit and magmatic zircons in the diorite dyke that cuts through the strata and orebodies.The maximum depositional age of the siltstones was determined to be about 604 Ma,the diorite having formed at approximately 500 Ma.As such,the Haerdaban Group was most likely formed in the Neoproterozoic Sinian,rather than the previously considered Mesoproterozoic Changchengian.Detrital materials of the Haerdaban Group were mostly derived from the Nanhua–Sinian mafic dykes and granitic rocks around Lake Sayram at the northern margin of the Yili Block.It is proposed that the Yili Block,together with the Kazakhstan and Central Tianshan blocks and the Tarim Craton,might all pertain to the same Rodinia supercontinent,which has great potential for targeting large to super-large SEDEX Pb-Zn deposits.
基金supported by NFSC Funds(Grant Nos.41902071 and 42011530173)the Doctoral Research Start-up Fund,East China University of Technology(DHBK2019313)。
文摘Geochemical maps are of great value in mineral exploration.Integrated geochemical anomaly maps provide comprehensive information about mapping assemblages of element concentrations to possible types of mineralization/ore,but vary depending on expert's knowledge and experience.This paper aims to test the capability of deep neural networks to delineate integrated anomaly based on a case study of the Zhaojikou Pb-Zn deposit,Southeast China.Three hundred fifty two samples were collected,and each sample consisted of 26 variables covering elemental composition,geological,and tectonic information.At first,generative adversarial networks were adopted for data augmentation.Then,DNN was trained on sets of synthetic and real data to identify an integrated anomaly.Finally,the results of DNN analyses were visualized in probability maps and compared with traditional anomaly maps to check its performance.Results showed that the average accuracy of the validation set was 94.76%.The probability maps showed that newly-identified integrated anomalous areas had a probability of above 75%in the northeast zones.It also showed that DNN models that used big data not only successfully recognized the anomalous areas identified on traditional geochemical element maps,but also discovered new anomalous areas,not picked up by the elemental anomaly maps previously.