Mining in tailings dams has emerged as a strategic alternative for mining companies for both economic and environmental reasons. Owing to technological limitations in recent decades, many of these dams have high metal...Mining in tailings dams has emerged as a strategic alternative for mining companies for both economic and environmental reasons. Owing to technological limitations in recent decades, many of these dams have high metal contents, emphasizing the need to evaluate the quality of these residues, especially considering the technological advancements in current concentration plants. An economic viability analysis associated with reusing these materials is crucial. From an environmental point of view, improving mining techniques for dams by considering both safety and feasibility is an advantageous option in decommissioning processes and alignment in the circular economy. In this context, representing these tailings in terms of grade quality and granulometry, as well as the associated contaminants, is essential. Geostatistical estimation and simulation methods are valuable tools for modeling tailings bodies, but they require a reliable sampling campaign to ensure acceptably low errors. From an operational perspective, tailings recovery can be conducted via dry methods, such as mechanical excavation, or hydraulic methods, such as dredging or hydraulic blasting. Dredging is a commonly used method, and cutter suction dredgers, which require pumping to transport fragmented material, are the most commonly used tools. In this paper, some practical applications of geostatistical methods for resource quantification in tailings dams will be discussed. Additionally, the main mining methods for tailings recovery in dams will be presented. Emphasis will be given to the dredging method, along with the key analysis parameters for sizing dredgers, pumps, and pipelines.展开更多
Some enzymatic activities were determined in the areas polluted by tailings from Tiantai Pb-Zn-Ag Mine in Zhejiang Province of China. The results indicated the soil enzymatic activities decreased significantly with in...Some enzymatic activities were determined in the areas polluted by tailings from Tiantai Pb-Zn-Ag Mine in Zhejiang Province of China. The results indicated the soil enzymatic activities decreased significantly with increase of concentrations of heavy metals or the distance away from mining tailing center, especially dehydrogenase and urease activities. Multivariate regression analysis between heavy metal contents and soil enzymatic activities indicated that single dehydrogenase activity was very significantly correlated to combined effect of soil heavy metals in mine area. Moreover, single urease, protease and acid phosphatase activities were significantly related to the combined effect of heavy metals. The results suggest it is feasible to use soil enzymatic activities to indicate the pollution situation by combined heavy metals in the soil of mine area.展开更多
A field demonstration of reduction of lead availability in a soil and cabbage (Brassica Chinensis L.) contaminated by mining tailings, located in Shaoxing, China was carried out to evaluate the effects of applications...A field demonstration of reduction of lead availability in a soil and cabbage (Brassica Chinensis L.) contaminated by mining tailings, located in Shaoxing, China was carried out to evaluate the effects of applications of phosphorus fertilizers on Pb fractionation and Pb phytoavailability in the soil. It was found that the addition of all three P fertilizers including single super phosphate (SSP), phosphate rock (PR), and calcium magnesium phosphate (CMP) significantly decreased the percentage of water-soluble and exchangeable (WE) soil Pb and then reduced the uptake of Pb, Cd, and Zn by the cabbage compared to the control (CK). The results showed that the level of 300 g P/m2 soil was the most cost-effective application rate of P fertilizers for reducing Pb availability at the first stage of remediation, and that at this P level, the effect of WE fraction of Pb in the soil de- creased by three phosphorus fertilizers followed the order: CMP (79%)>SSP (41%)>PR (23%); Effectiveness on the reduction of Pb uptake by cabbage was in the order: CMP (53%)>SSP (41%)>PR (30%). Therefore our field trial demonstrated that it was effective and feasible to reduce Pb availability in soil and cabbage contaminated by mining tailings using P fertilizers in China and PR would be a most cost-effective amendment.展开更多
This paper elaborates on the development of paste backfill using mill tailings generated during the processing of a uranium ore deposit hosted in dolomitic limestone. The tailings have been characterized in terms of t...This paper elaborates on the development of paste backfill using mill tailings generated during the processing of a uranium ore deposit hosted in dolomitic limestone. The tailings have been characterized in terms of the physical, chemical and mineralogical properties. Time-dependent rheological behaviors and geotechnical properties of cemented paste backfill(CPB) are also determined. The studies show that the mill tailing has the potential to form paste and the CPB has adequate strength to provide support to mine pillars, roofs, and walls.展开更多
Mine waste and process tailings storage is one of important challenge for which mining operations are increasingly confronted. Treatment discharges of plants and main part of waste rock development are generally store...Mine waste and process tailings storage is one of important challenge for which mining operations are increasingly confronted. Treatment discharges of plants and main part of waste rock development are generally stored on surface areas. The volume and chemical characteristics of these materials generate serious problem for required storage spaces and mainly environmental degradation. Paste backfill(PBF) is one of ingenious solutions to minimize the quantity of tailings to store. PBF is basically defined as a combination of mine processing tailings, binder, and water mixing. The purpose of this paper is to present backfilling components characterization and formula verification for a waste valorization solution through paste backfilling technology in Imiter operation. Obtained results and realized analysis demonstrate PBF conformity and adequacy with assigned underground functions. However the studied recipe can be more ameliorated to obtain an optimal mixture ensuring the required mechanical strength.展开更多
This study focused on the restoration potential of ten pioneer plants (Artemisia roxburghiana, Artemisia tangutica, Carex inanis, Cyperaceae hebecarpus, Plantago depresa, Cynoglossum lanceolatum, Potentilla saundesian...This study focused on the restoration potential of ten pioneer plants (Artemisia roxburghiana, Artemisia tangutica, Carex inanis, Cyperaceae hebecarpus, Plantago depresa, Cynoglossum lanceolatum, Potentilla saundesiana, Coriaria sinica, Oxyria sinensis, and Miscanthus nepalensis) during the early phase of Pb-Zn mine tailings phytostabilization, in Lanping, China. The concentrations of heavy metals (Pb, Zn, and Cu) and soil fertility (the available N, P, K, and organic matter) in the rhizosphere of these spe...展开更多
The Westwood Mine aims to reuse the tailings storage facility #1(TSF #1) for solid waste storage, but,downstream of the Northwest dike is considered critical in terms of stability. This paper uses numerical modeling a...The Westwood Mine aims to reuse the tailings storage facility #1(TSF #1) for solid waste storage, but,downstream of the Northwest dike is considered critical in terms of stability. This paper uses numerical modeling along with geophysical monitoring for assessing the Northwest dike stability during the restoration phase. The impact of waste rock deposition in the upstream TSF #1 is considered. The geophysical monitoring is based on electrical resistivity methods and was used to investigate the internal structure of the dike embankment in different deposition stages. The numerical simulations were performed with SLOPE/W code. The results show a factor of safety well above the minimum recommended value of 1.5. Geophysical monitoring revealed a vertical variation in the electrical resistivity across the dike, which indicates a multilayer structure of the embankment. Without any current in situ data, the geophysical monitoring helped estimating the nature of the materials used and the internal structure of the embankment. These interpretations were validated by geological observation of geotechnical log of the embankment. Based on this study, it is recommended that the water polishing pond be partly filled before waste rock is deposited in TSF #1. In addition, to ensure the stability of the dike, the piezometric head monitoring prior to and during waste rock deposition is recommended.展开更多
Acid mine drainage (AMD) with high concentrations of sulfates and metals is generated by the oxidation of sulfide beating wastes. CaCO3-rich marble cutting waste is a residual material produced by the cutting and po...Acid mine drainage (AMD) with high concentrations of sulfates and metals is generated by the oxidation of sulfide beating wastes. CaCO3-rich marble cutting waste is a residual material produced by the cutting and polishing of marble stone. In this study, the feasibility of using the marble cutting waste as an acid-neutralizing agent to inhibit AMD and immobilize heavy metals from copper flotation tailings (sul- fide-beating wastes) was investigated. Continuous-stirring shake-flask tests were conducted for 40 d, and the pH value, sulfate content, and dissolved metal content of the leachate were analyzed every 10 d to determine the effectiveness of the marble cutting waste as an acid neu- tralizer. For comparison, CaCO3 was also used as a neutralizing agent. The average pH value of the leachate was 2.1 at the beginning of the experiment (t = 0). In the experiment employing the marble cutting waste, the pH value of the leachate changed from 6.5 to 7.8, and the sul- fate and iron concentrations decreased from 4558 to 838 mg/L and from 536 to 0.01 mg/L, respectively, after 40 d. The marble cutting waste also removed more than 80wt% of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) from AMD generated by copper flotation tailings.展开更多
Considering its structural features, geometric shapes, service mode, environmental media, mechanical behavior, etc, the special nature and complexity of tailings dam were summarized. The technical approach to safety m...Considering its structural features, geometric shapes, service mode, environmental media, mechanical behavior, etc, the special nature and complexity of tailings dam were summarized. The technical approach to safety management for tailings dam was proposed, which is the on-line automated monitoring and early warning information. The results show that a strong theoretical basis can be provided for security monitoring and security management of tailings dam. Online automated monitoring system for tailings dam has full implementation of the information. It is applied widely in Lingnan gold mine, Xiadian gold mine and Hedong gold mine in Zhaoyuan, Shandong Province, and achieves good effect.展开更多
AMD(Acid Mine Drainage)-type acidic groundwater (pH<4) from oxidizing sulfide tailings in BS nickel mine (Western Australia) is of higher total rare earth element(REE) contents and Ce enrichment (PAAS normalization...AMD(Acid Mine Drainage)-type acidic groundwater (pH<4) from oxidizing sulfide tailings in BS nickel mine (Western Australia) is of higher total rare earth element(REE) contents and Ce enrichment (PAAS normalization), different from setting groundwater (pH>6.5, with lower total REE contents, Ce depletion). While the AMD contaminated groundwater (pH=4.0-6.5) around tailings pond is characterized by transition from acidic to setting groundwater in total REE content, and associated with Ce depletion (like setting groundwater). The light REE in all type groundwater shows up depletion, but its depleted extent in acidic groundwater is more remarkable. This work indicates that REE behavior in AMD-type acidic groundwater is controlled mainly by pH value and metal (Al, Mn and Fe) contents. And the critical pH value that affects REE behavior in ground acidic water would be 4, lower than the previous value (pH=5) that has been believed prevalently in surface acidic waters. The pH could affect REE behavior in groundwater by controlling the solubility of metal (Al, Mn and Fe) hydroxides and the valence of cerium. Finally, light REE depletion in acidic groundwater may due to element affinity. High content Al (affinity with heavy REE) and low content Fe (affinity with light REE) may lead to heavy REE enrichment while light REE relative depletion in water.展开更多
Based on a case study on uranium mine No.765 of China National Nuclear Corporation (CNNC), the paper briefly describes disposal program and effect of decommissioning uranium mine/mill facilities and quantitatively...Based on a case study on uranium mine No.765 of China National Nuclear Corporation (CNNC), the paper briefly describes disposal program and effect of decommissioning uranium mine/mill facilities and quantitatively evaluates radon fluxes and doses to man of gaseous airborne pathway from mill tailings and mining debris before and after decommissioning, including annual individual effective dose to critical groups and annual collective effective dose to the population within 80 km region of the facilities.展开更多
Stabilized sewage sludge (SS) by fly ash (FA) and alkaline mine tailing as artificial soil, to be applied on the ecological rehabilitation at mining junkyards, offers a potentially viable utilization of the indust...Stabilized sewage sludge (SS) by fly ash (FA) and alkaline mine tailing as artificial soil, to be applied on the ecological rehabilitation at mining junkyards, offers a potentially viable utilization of the industrial by-product, as well as solves the shortage of soil resource in the mine area. An incubation experiment with different ratios of SS and FA was conducted to evaluate the solubility of ions and trace elements from stabilized sewage sludge. Results showed that fly ash offset a decrease in pH value of sewage sludge. The pH of (C) treatment (FA:SS = 1:1) was stable and tended to neutrality. The SO4^2- and Cl^- concentrations of the solution in the mixture were significantly decreased in the stabilized sewage sludge by alkaline fly ash and mine tailing, compared to the single SS treatment. Stabilized sewage sludge by FA weakened the nitrification of total nitrogen from SS when the proportion of FA in the mixture was more than 50%. The Cr, Ni, and Cu concentrations in the solution were gradually decreased and achieved a stable level after 22 days, for all treatments over the duration of the incubation. Moreover stabilized sewage sludge by fly ash and/or mine tailing notably decreased the trace metal solubility. The final Cr, Cu, and Ni concentrations in the solution for all mixtures of treatments were lower than 2.5, 15, and 50 μg/L, respectively.展开更多
The present study focused on the re-processing of copper and nickel from mine tailings. In this work, recovery of copper and nickel from mine tailing by combined process of flotation and high pressure oxidative leachi...The present study focused on the re-processing of copper and nickel from mine tailings. In this work, recovery of copper and nickel from mine tailing by combined process of flotation and high pressure oxidative leaching were considered. In the first stage, effects of flotation parameters including collector type, collector dosage, and pH and pulp density were examined. The results showed that over 80% copper recovery was achieved under the optimized flotation conditions while nickel recovery was lower than 30% due to its co-ex-istence with gangue minerals of pyrrhotite, pyrite and other clay minerals. In the second stage, key parameters, particularly concentration of sulfuric acid, temperature, pressure and leaching time were investigated to test the leaching efficiency of copper and nickel from the flotation concentrate with high pressure oxidative leaching (HPOL). A comparison was made between the leaching efficiencies of copper and nickel from flotation concentrates and mine tailing.展开更多
文摘Mining in tailings dams has emerged as a strategic alternative for mining companies for both economic and environmental reasons. Owing to technological limitations in recent decades, many of these dams have high metal contents, emphasizing the need to evaluate the quality of these residues, especially considering the technological advancements in current concentration plants. An economic viability analysis associated with reusing these materials is crucial. From an environmental point of view, improving mining techniques for dams by considering both safety and feasibility is an advantageous option in decommissioning processes and alignment in the circular economy. In this context, representing these tailings in terms of grade quality and granulometry, as well as the associated contaminants, is essential. Geostatistical estimation and simulation methods are valuable tools for modeling tailings bodies, but they require a reliable sampling campaign to ensure acceptably low errors. From an operational perspective, tailings recovery can be conducted via dry methods, such as mechanical excavation, or hydraulic methods, such as dredging or hydraulic blasting. Dredging is a commonly used method, and cutter suction dredgers, which require pumping to transport fragmented material, are the most commonly used tools. In this paper, some practical applications of geostatistical methods for resource quantification in tailings dams will be discussed. Additionally, the main mining methods for tailings recovery in dams will be presented. Emphasis will be given to the dredging method, along with the key analysis parameters for sizing dredgers, pumps, and pipelines.
文摘Some enzymatic activities were determined in the areas polluted by tailings from Tiantai Pb-Zn-Ag Mine in Zhejiang Province of China. The results indicated the soil enzymatic activities decreased significantly with increase of concentrations of heavy metals or the distance away from mining tailing center, especially dehydrogenase and urease activities. Multivariate regression analysis between heavy metal contents and soil enzymatic activities indicated that single dehydrogenase activity was very significantly correlated to combined effect of soil heavy metals in mine area. Moreover, single urease, protease and acid phosphatase activities were significantly related to the combined effect of heavy metals. The results suggest it is feasible to use soil enzymatic activities to indicate the pollution situation by combined heavy metals in the soil of mine area.
基金Project (No. 40432004) supported by the National Natural ScienceFoundation of China and the Science & Technology Foundation(2004) of Zhejiang Province, China
文摘A field demonstration of reduction of lead availability in a soil and cabbage (Brassica Chinensis L.) contaminated by mining tailings, located in Shaoxing, China was carried out to evaluate the effects of applications of phosphorus fertilizers on Pb fractionation and Pb phytoavailability in the soil. It was found that the addition of all three P fertilizers including single super phosphate (SSP), phosphate rock (PR), and calcium magnesium phosphate (CMP) significantly decreased the percentage of water-soluble and exchangeable (WE) soil Pb and then reduced the uptake of Pb, Cd, and Zn by the cabbage compared to the control (CK). The results showed that the level of 300 g P/m2 soil was the most cost-effective application rate of P fertilizers for reducing Pb availability at the first stage of remediation, and that at this P level, the effect of WE fraction of Pb in the soil de- creased by three phosphorus fertilizers followed the order: CMP (79%)>SSP (41%)>PR (23%); Effectiveness on the reduction of Pb uptake by cabbage was in the order: CMP (53%)>SSP (41%)>PR (30%). Therefore our field trial demonstrated that it was effective and feasible to reduce Pb availability in soil and cabbage contaminated by mining tailings using P fertilizers in China and PR would be a most cost-effective amendment.
基金the Department of Atomic Energy (DAE),Government of India,for providing financial assistance (BARC/IFB/IITKHARAGPUR/295, Dt.18-03-2013) during this research work
文摘This paper elaborates on the development of paste backfill using mill tailings generated during the processing of a uranium ore deposit hosted in dolomitic limestone. The tailings have been characterized in terms of the physical, chemical and mineralogical properties. Time-dependent rheological behaviors and geotechnical properties of cemented paste backfill(CPB) are also determined. The studies show that the mill tailing has the potential to form paste and the CPB has adequate strength to provide support to mine pillars, roofs, and walls.
文摘Mine waste and process tailings storage is one of important challenge for which mining operations are increasingly confronted. Treatment discharges of plants and main part of waste rock development are generally stored on surface areas. The volume and chemical characteristics of these materials generate serious problem for required storage spaces and mainly environmental degradation. Paste backfill(PBF) is one of ingenious solutions to minimize the quantity of tailings to store. PBF is basically defined as a combination of mine processing tailings, binder, and water mixing. The purpose of this paper is to present backfilling components characterization and formula verification for a waste valorization solution through paste backfilling technology in Imiter operation. Obtained results and realized analysis demonstrate PBF conformity and adequacy with assigned underground functions. However the studied recipe can be more ameliorated to obtain an optimal mixture ensuring the required mechanical strength.
基金the National Key BasicResearch Program (No. 2003CB145103)the New CenturyExcellent Talents in University (No. NCET-04-0914)the National Natural Science Foundation of China (No.30760049, 30640022)
文摘This study focused on the restoration potential of ten pioneer plants (Artemisia roxburghiana, Artemisia tangutica, Carex inanis, Cyperaceae hebecarpus, Plantago depresa, Cynoglossum lanceolatum, Potentilla saundesiana, Coriaria sinica, Oxyria sinensis, and Miscanthus nepalensis) during the early phase of Pb-Zn mine tailings phytostabilization, in Lanping, China. The concentrations of heavy metals (Pb, Zn, and Cu) and soil fertility (the available N, P, K, and organic matter) in the rhizosphere of these spe...
基金financially supported by NSERC (Natural Sciences and Engineering Research Council of Canada) Engage grants
文摘The Westwood Mine aims to reuse the tailings storage facility #1(TSF #1) for solid waste storage, but,downstream of the Northwest dike is considered critical in terms of stability. This paper uses numerical modeling along with geophysical monitoring for assessing the Northwest dike stability during the restoration phase. The impact of waste rock deposition in the upstream TSF #1 is considered. The geophysical monitoring is based on electrical resistivity methods and was used to investigate the internal structure of the dike embankment in different deposition stages. The numerical simulations were performed with SLOPE/W code. The results show a factor of safety well above the minimum recommended value of 1.5. Geophysical monitoring revealed a vertical variation in the electrical resistivity across the dike, which indicates a multilayer structure of the embankment. Without any current in situ data, the geophysical monitoring helped estimating the nature of the materials used and the internal structure of the embankment. These interpretations were validated by geological observation of geotechnical log of the embankment. Based on this study, it is recommended that the water polishing pond be partly filled before waste rock is deposited in TSF #1. In addition, to ensure the stability of the dike, the piezometric head monitoring prior to and during waste rock deposition is recommended.
文摘Acid mine drainage (AMD) with high concentrations of sulfates and metals is generated by the oxidation of sulfide beating wastes. CaCO3-rich marble cutting waste is a residual material produced by the cutting and polishing of marble stone. In this study, the feasibility of using the marble cutting waste as an acid-neutralizing agent to inhibit AMD and immobilize heavy metals from copper flotation tailings (sul- fide-beating wastes) was investigated. Continuous-stirring shake-flask tests were conducted for 40 d, and the pH value, sulfate content, and dissolved metal content of the leachate were analyzed every 10 d to determine the effectiveness of the marble cutting waste as an acid neu- tralizer. For comparison, CaCO3 was also used as a neutralizing agent. The average pH value of the leachate was 2.1 at the beginning of the experiment (t = 0). In the experiment employing the marble cutting waste, the pH value of the leachate changed from 6.5 to 7.8, and the sul- fate and iron concentrations decreased from 4558 to 838 mg/L and from 536 to 0.01 mg/L, respectively, after 40 d. The marble cutting waste also removed more than 80wt% of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) from AMD generated by copper flotation tailings.
基金Projects(50874064,50804026,50904039)supported by the National Natural Science Foundation of ChinaProject(200804290002)supported by Research Fund for the Doctoral Program of Higher Education of ChinaProject(G2010F10)supported by S&T Plan Project from Shandong Provincial Education Department
文摘Considering its structural features, geometric shapes, service mode, environmental media, mechanical behavior, etc, the special nature and complexity of tailings dam were summarized. The technical approach to safety management for tailings dam was proposed, which is the on-line automated monitoring and early warning information. The results show that a strong theoretical basis can be provided for security monitoring and security management of tailings dam. Online automated monitoring system for tailings dam has full implementation of the information. It is applied widely in Lingnan gold mine, Xiadian gold mine and Hedong gold mine in Zhaoyuan, Shandong Province, and achieves good effect.
基金Project supported by the Science Foundation of Guangxi Province, ChinaProject supported by the Director Fund Project of Key Laboratory of Geological Engineering Center of Guangxi Province, China
文摘AMD(Acid Mine Drainage)-type acidic groundwater (pH<4) from oxidizing sulfide tailings in BS nickel mine (Western Australia) is of higher total rare earth element(REE) contents and Ce enrichment (PAAS normalization), different from setting groundwater (pH>6.5, with lower total REE contents, Ce depletion). While the AMD contaminated groundwater (pH=4.0-6.5) around tailings pond is characterized by transition from acidic to setting groundwater in total REE content, and associated with Ce depletion (like setting groundwater). The light REE in all type groundwater shows up depletion, but its depleted extent in acidic groundwater is more remarkable. This work indicates that REE behavior in AMD-type acidic groundwater is controlled mainly by pH value and metal (Al, Mn and Fe) contents. And the critical pH value that affects REE behavior in ground acidic water would be 4, lower than the previous value (pH=5) that has been believed prevalently in surface acidic waters. The pH could affect REE behavior in groundwater by controlling the solubility of metal (Al, Mn and Fe) hydroxides and the valence of cerium. Finally, light REE depletion in acidic groundwater may due to element affinity. High content Al (affinity with heavy REE) and low content Fe (affinity with light REE) may lead to heavy REE enrichment while light REE relative depletion in water.
文摘Based on a case study on uranium mine No.765 of China National Nuclear Corporation (CNNC), the paper briefly describes disposal program and effect of decommissioning uranium mine/mill facilities and quantitatively evaluates radon fluxes and doses to man of gaseous airborne pathway from mill tailings and mining debris before and after decommissioning, including annual individual effective dose to critical groups and annual collective effective dose to the population within 80 km region of the facilities.
基金supported by the National Basic Research Project(973)of China(No.2004CB418503)the National Natural Science Foundation of China(No.20477029,20337010)the Natural Science Foundation of Liaoning(No.20062002).
文摘Stabilized sewage sludge (SS) by fly ash (FA) and alkaline mine tailing as artificial soil, to be applied on the ecological rehabilitation at mining junkyards, offers a potentially viable utilization of the industrial by-product, as well as solves the shortage of soil resource in the mine area. An incubation experiment with different ratios of SS and FA was conducted to evaluate the solubility of ions and trace elements from stabilized sewage sludge. Results showed that fly ash offset a decrease in pH value of sewage sludge. The pH of (C) treatment (FA:SS = 1:1) was stable and tended to neutrality. The SO4^2- and Cl^- concentrations of the solution in the mixture were significantly decreased in the stabilized sewage sludge by alkaline fly ash and mine tailing, compared to the single SS treatment. Stabilized sewage sludge by FA weakened the nitrification of total nitrogen from SS when the proportion of FA in the mixture was more than 50%. The Cr, Ni, and Cu concentrations in the solution were gradually decreased and achieved a stable level after 22 days, for all treatments over the duration of the incubation. Moreover stabilized sewage sludge by fly ash and/or mine tailing notably decreased the trace metal solubility. The final Cr, Cu, and Ni concentrations in the solution for all mixtures of treatments were lower than 2.5, 15, and 50 μg/L, respectively.
文摘The present study focused on the re-processing of copper and nickel from mine tailings. In this work, recovery of copper and nickel from mine tailing by combined process of flotation and high pressure oxidative leaching were considered. In the first stage, effects of flotation parameters including collector type, collector dosage, and pH and pulp density were examined. The results showed that over 80% copper recovery was achieved under the optimized flotation conditions while nickel recovery was lower than 30% due to its co-ex-istence with gangue minerals of pyrrhotite, pyrite and other clay minerals. In the second stage, key parameters, particularly concentration of sulfuric acid, temperature, pressure and leaching time were investigated to test the leaching efficiency of copper and nickel from the flotation concentrate with high pressure oxidative leaching (HPOL). A comparison was made between the leaching efficiencies of copper and nickel from flotation concentrates and mine tailing.