Benefiting from the superior optoelectronic properties and low-cost manufacturing techniques,mixedhalide wide bandgap(WBG)perovskite solar cells(PSCs)are currently considered as ideal top cells for fabricating multi-j...Benefiting from the superior optoelectronic properties and low-cost manufacturing techniques,mixedhalide wide bandgap(WBG)perovskite solar cells(PSCs)are currently considered as ideal top cells for fabricating multi-junction or tandem solar cells,which are designed to beyond the Shockley-Queisser(S-Q)limit of single-junction solar cells.However,the poor long-term operational stability of WBG PSCs limits their further employment and hinders the marketization of multi-junction or tandem solar cells.In this review,recent progresses on improving environmental stability of mixed-halide WBG PSCs through different strategies,including compositional engineering,additive engineering,interface engineering,and other strategies,are summarized.Then,the outlook and potential direction are discussed and explored to promote the further development of WBG PSCs and their applications in multijunction or tandem solar cells.展开更多
Alkali halides crystals have been the subject of intense research. High order crystalline one phase mixtures (high order: more that binary) studied by TL (thermoluminiscence technique) proved having persistent pe...Alkali halides crystals have been the subject of intense research. High order crystalline one phase mixtures (high order: more that binary) studied by TL (thermoluminiscence technique) proved having persistent peaks along the time after the radiation to which they are exposed. In general in alkali halide crystals the traps associated with highest recorded temperature peaks in the TL due to radiation damage have greater permanence in time too. These features are useful for dosimetric applications. In this work, temperature thermoluminescence glow peaks of ternary and quaternary mixed alkali halide crystals have been studied. The study has been focused on their high temperature glow peaks after being subjected to thermal treatments at 373, 573, and 673 K. The glow peaks of high temperature were isolated and studied 24 h and 48 h after irradiation. The parameters of the recombination processes associated to these peaks were obtained using a glow peak shape method. Orders of kinetics were higher than 1.0 and the activation energy greater than 1.2 eV. The results suggest that such materials have a high potential as dosimeter and energy storage materials.展开更多
In the present research, mixed crystals KCl1–xBrx (x = 0.1, 0.3, 0.5, 0.7 & 0.9) were grown by Czochralski method. Then some analysis such as chemical etching, XRD, and absorbing spectrum were established on the ...In the present research, mixed crystals KCl1–xBrx (x = 0.1, 0.3, 0.5, 0.7 & 0.9) were grown by Czochralski method. Then some analysis such as chemical etching, XRD, and absorbing spectrum were established on the irradiated crystals by γ-ray. The results of this research show that configuration of defects in mixed crystals in contrast with pure crystals is different. Somehow that type and percentage of cumulative composition cause to changing in lattice parameter and lattice defect density in alkali halide crystals and finally change optical properties of crystal.展开更多
Optical absorption spectra of the mixed crystals of KBr1-xIx:Tl+ crystals studied at room temperature are reported.The absorption spectra indicated the appearance of additional bands on the low energy side of the Char...Optical absorption spectra of the mixed crystals of KBr1-xIx:Tl+ crystals studied at room temperature are reported.The absorption spectra indicated the appearance of additional bands on the low energy side of the Characteristic A,B and C absorption bands of KBr:Tl+ single crystals with increasing iodine composition.Comparing with earlier reports,the additional bands were attributed to the complex Tl+centers in the mixed configuration surrounded by Br-and I-ions as nearest neighbors.The absorption spectra of gamma irradiated mixed crystals showed F band,which shifts towards low energy side with the composition of iodine ions in the mixed crystals.展开更多
We report a simple,effective,and universal lattice reconstruction approach to improve the quality of perovskite films by using nonpolar solvents with high Gutmann donor numbers(DNs).We find that high-DN nonpolar solve...We report a simple,effective,and universal lattice reconstruction approach to improve the quality of perovskite films by using nonpolar solvents with high Gutmann donor numbers(DNs).We find that high-DN nonpolar solvents,for instance,ethyl acetate,can interact with perovskite precursors.Such a solvent can make the perovskite lattice more ordered and“harder”and promote the formation of heterostructures with low-dimensional perovskite impurities and residual solvent molecules.As a result,the latticereconstructed perovskite films exhibit reduced defect densities and suppressed ion migration.The resultant mixed-halide blue perovskite light-emitting diodes(PeLEDs)show greatly enhanced tolerance to high driving current densities and voltages,demonstrating high brightness,outstanding color stability and low efficiency roll-off.Our work provides a deep understanding of the interactions between nonpolar solvents and perovskites and offers useful guidelines for further development of high-power PeLEDs.展开更多
Although perovskite light-emitting diodes(PeLEDs)have seen unprecedented development in device efciency over the past decade,they sufer signifcantly from poor operational stability.This is especially true for blue PeL...Although perovskite light-emitting diodes(PeLEDs)have seen unprecedented development in device efciency over the past decade,they sufer signifcantly from poor operational stability.This is especially true for blue PeLEDs,whose operational lifetime remains orders of magnitude behind their green and red counterparts.Here,we systematically investigate this efciency-stability discrepancy in a series of green-to blue-emitting PeLEDs based on mixed Br/Cl-perovskites.We fnd that chloride incorporation,while having only a limited impact on efciency,detrimentally afects device stability even in small amounts.Device lifetime drops exponentially with increasing Cl-content,accompanied by an increased rate of change in electrical properties during operation.We ascribe this phenomenon to an increased mobility of halogen ions in the mixed-halide lattice due to an increased chemically and structurally disordered landscape with reduced migration barriers.Our results indicate that the stability enhancement for PeLEDs might require diferent strategies from those used for improving efciency.展开更多
对一个含Pb的混合卤化物Pb_7F_(12)Br_2进行了合成及单晶结构与性能测试,并首次对它的各种与非线性光学材料相关的主要性能进行了研究。发现该化合物的光学带隙宽达4.32 e V,粉末激光损伤阈值为25 MW·cm-2,远高于同等测试条件下商...对一个含Pb的混合卤化物Pb_7F_(12)Br_2进行了合成及单晶结构与性能测试,并首次对它的各种与非线性光学材料相关的主要性能进行了研究。发现该化合物的光学带隙宽达4.32 e V,粉末激光损伤阈值为25 MW·cm-2,远高于同等测试条件下商品化红外非线性光学晶体材料AgGaS_2的粉末激光损伤阈值(<5.2 MW·cm-2),它的粉末倍频效应为KDP(KH2PO4)的1.5倍并能够实现相位匹配,粉末透光范围宽为0.3~14μm,热分解温度超过650℃,展示了较好的综合性能。展开更多
混合卤化物钙钛矿量子点CsPbBr x I 3-x的带隙高度可调,是光伏和光电领域有广泛用途的纳米材料.在激光连续照射下发生的相分离会降低光电器件的效率,严重影响混合卤化物钙钛矿纳米晶在器件中的应用.本文制备了CsPbBr 1.5 I 1.5和CsPbBr...混合卤化物钙钛矿量子点CsPbBr x I 3-x的带隙高度可调,是光伏和光电领域有广泛用途的纳米材料.在激光连续照射下发生的相分离会降低光电器件的效率,严重影响混合卤化物钙钛矿纳米晶在器件中的应用.本文制备了CsPbBr 1.5 I 1.5和CsPbBrI 2钙钛矿量子点薄膜,对激光激发下的相分离行为与卤化物组成比例、光照时间、激光功率和旋涂浓度的关系进行了研究.研究发现:在不同光照时间、激光功率和旋涂浓度条件下,CsPbBr 1.5 I 1.5量子点薄膜都产生了光谱蓝移的相分离,随后在黑暗下放置一段时间后再次进行测量,发现这种相分离是可逆的;而制备的CsPbBrI 2量子点薄膜在不同功率、光照时间、旋涂浓度下都很稳定,没有发生相分离,光谱只有略微蓝移.展开更多
基金the National Natural Science Foundation of China(Grant Nos.51602149,61705102,61605073,61935017,91833304,and 91733302)the Natural Science Foundation of Jiangsu Province for Distinguished Young Scholars,China(Grant BK20200034)+5 种基金the Projects of International Cooperation and Exchanges NSFC(51811530018)the Startup Research Foundation from Nanjing Tech University(3827401783,3983500196)the Young 1000 Talents Global Recruitment Program of Chinathe Jiangsu Specially-Appointed Professor programthe“Six talent peaks”Project in Jiangsu Province,Chinafunding from the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)under Germanys Excellence Strategy-EXC 2089/1-390776260(e-conversion)。
文摘Benefiting from the superior optoelectronic properties and low-cost manufacturing techniques,mixedhalide wide bandgap(WBG)perovskite solar cells(PSCs)are currently considered as ideal top cells for fabricating multi-junction or tandem solar cells,which are designed to beyond the Shockley-Queisser(S-Q)limit of single-junction solar cells.However,the poor long-term operational stability of WBG PSCs limits their further employment and hinders the marketization of multi-junction or tandem solar cells.In this review,recent progresses on improving environmental stability of mixed-halide WBG PSCs through different strategies,including compositional engineering,additive engineering,interface engineering,and other strategies,are summarized.Then,the outlook and potential direction are discussed and explored to promote the further development of WBG PSCs and their applications in multijunction or tandem solar cells.
文摘Alkali halides crystals have been the subject of intense research. High order crystalline one phase mixtures (high order: more that binary) studied by TL (thermoluminiscence technique) proved having persistent peaks along the time after the radiation to which they are exposed. In general in alkali halide crystals the traps associated with highest recorded temperature peaks in the TL due to radiation damage have greater permanence in time too. These features are useful for dosimetric applications. In this work, temperature thermoluminescence glow peaks of ternary and quaternary mixed alkali halide crystals have been studied. The study has been focused on their high temperature glow peaks after being subjected to thermal treatments at 373, 573, and 673 K. The glow peaks of high temperature were isolated and studied 24 h and 48 h after irradiation. The parameters of the recombination processes associated to these peaks were obtained using a glow peak shape method. Orders of kinetics were higher than 1.0 and the activation energy greater than 1.2 eV. The results suggest that such materials have a high potential as dosimeter and energy storage materials.
文摘In the present research, mixed crystals KCl1–xBrx (x = 0.1, 0.3, 0.5, 0.7 & 0.9) were grown by Czochralski method. Then some analysis such as chemical etching, XRD, and absorbing spectrum were established on the irradiated crystals by γ-ray. The results of this research show that configuration of defects in mixed crystals in contrast with pure crystals is different. Somehow that type and percentage of cumulative composition cause to changing in lattice parameter and lattice defect density in alkali halide crystals and finally change optical properties of crystal.
基金the All India Council for Technical Education (AICTE),New Delhi,India for granting funds for this investigation under TAPTEC scheme vide project File(No.8018/RDII/BOR/TAP(371)/99-2000)
文摘Optical absorption spectra of the mixed crystals of KBr1-xIx:Tl+ crystals studied at room temperature are reported.The absorption spectra indicated the appearance of additional bands on the low energy side of the Characteristic A,B and C absorption bands of KBr:Tl+ single crystals with increasing iodine composition.Comparing with earlier reports,the additional bands were attributed to the complex Tl+centers in the mixed configuration surrounded by Br-and I-ions as nearest neighbors.The absorption spectra of gamma irradiated mixed crystals showed F band,which shifts towards low energy side with the composition of iodine ions in the mixed crystals.
基金financially supported by the Swedish Energy Agency Energimyndigheten(48758-1)the European Research Council Consolidator Grant(LEAP,101045098)+1 种基金the National Natural Science Foundation of China(52102217)the Swedish Government Strategic Research Area in Materials Science on Functional Materials at Link?ping University(Faculty Grant SFO-Mat-LiU 2009-00971)。
文摘We report a simple,effective,and universal lattice reconstruction approach to improve the quality of perovskite films by using nonpolar solvents with high Gutmann donor numbers(DNs).We find that high-DN nonpolar solvents,for instance,ethyl acetate,can interact with perovskite precursors.Such a solvent can make the perovskite lattice more ordered and“harder”and promote the formation of heterostructures with low-dimensional perovskite impurities and residual solvent molecules.As a result,the latticereconstructed perovskite films exhibit reduced defect densities and suppressed ion migration.The resultant mixed-halide blue perovskite light-emitting diodes(PeLEDs)show greatly enhanced tolerance to high driving current densities and voltages,demonstrating high brightness,outstanding color stability and low efficiency roll-off.Our work provides a deep understanding of the interactions between nonpolar solvents and perovskites and offers useful guidelines for further development of high-power PeLEDs.
基金supported by the National Natural Science Foundation of China(Grant Nos.62274135,52250060,and 62288102)supported by the Swedish Energy Agency Energimyndigheten(Nos.P2019-48758 and P2022-00394)+2 种基金the Göran Gustafsson Foundation for Research in Natural Sciences and Medicine and the Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linköping University(Faculty Grant SFO-Mat-LiU No.2009-00971)support from China Scholarship Council(No.202006210284)and Tsinghua Scholarship for short-term overseas graduate studiesby resources provided by the National Academic Infrastructure for Supercomputing in Sweden(NAISS)and the Swedish National Infrastructure for Computing(SNIC)at the National Supercomputer Centre(NSC)and the PDC Center for High Performance Computing partially funded by the Swedish Research Council through grant agreements no.2022-06725 and no.2018-05973.
文摘Although perovskite light-emitting diodes(PeLEDs)have seen unprecedented development in device efciency over the past decade,they sufer signifcantly from poor operational stability.This is especially true for blue PeLEDs,whose operational lifetime remains orders of magnitude behind their green and red counterparts.Here,we systematically investigate this efciency-stability discrepancy in a series of green-to blue-emitting PeLEDs based on mixed Br/Cl-perovskites.We fnd that chloride incorporation,while having only a limited impact on efciency,detrimentally afects device stability even in small amounts.Device lifetime drops exponentially with increasing Cl-content,accompanied by an increased rate of change in electrical properties during operation.We ascribe this phenomenon to an increased mobility of halogen ions in the mixed-halide lattice due to an increased chemically and structurally disordered landscape with reduced migration barriers.Our results indicate that the stability enhancement for PeLEDs might require diferent strategies from those used for improving efciency.
文摘对一个含Pb的混合卤化物Pb_7F_(12)Br_2进行了合成及单晶结构与性能测试,并首次对它的各种与非线性光学材料相关的主要性能进行了研究。发现该化合物的光学带隙宽达4.32 e V,粉末激光损伤阈值为25 MW·cm-2,远高于同等测试条件下商品化红外非线性光学晶体材料AgGaS_2的粉末激光损伤阈值(<5.2 MW·cm-2),它的粉末倍频效应为KDP(KH2PO4)的1.5倍并能够实现相位匹配,粉末透光范围宽为0.3~14μm,热分解温度超过650℃,展示了较好的综合性能。
文摘混合卤化物钙钛矿量子点CsPbBr x I 3-x的带隙高度可调,是光伏和光电领域有广泛用途的纳米材料.在激光连续照射下发生的相分离会降低光电器件的效率,严重影响混合卤化物钙钛矿纳米晶在器件中的应用.本文制备了CsPbBr 1.5 I 1.5和CsPbBrI 2钙钛矿量子点薄膜,对激光激发下的相分离行为与卤化物组成比例、光照时间、激光功率和旋涂浓度的关系进行了研究.研究发现:在不同光照时间、激光功率和旋涂浓度条件下,CsPbBr 1.5 I 1.5量子点薄膜都产生了光谱蓝移的相分离,随后在黑暗下放置一段时间后再次进行测量,发现这种相分离是可逆的;而制备的CsPbBrI 2量子点薄膜在不同功率、光照时间、旋涂浓度下都很稳定,没有发生相分离,光谱只有略微蓝移.
基金Project(2022YFB3602804)supported by the National Key Research and Development Program of ChinaProjects(52233011,61974066,U21A2078)supported by the National Natural Science Foundation of China。