Background,aim,and scope The tectonic uplift of the Cenozoic Tibetan Plateau has produced a chain effect,which is an excellent location for Earth system science research,and its uplift process,mechanism and environmen...Background,aim,and scope The tectonic uplift of the Cenozoic Tibetan Plateau has produced a chain effect,which is an excellent location for Earth system science research,and its uplift process,mechanism and environmental effects are the hot spot and frontier of the current research.The“Tibetan Plateau uplift-weathering-CO_(2) concentration-global climate change”model was put forward by Raymo and Ruddiman to interpret the Late Cenozoic climate change.However,there are still some questions suspended,such as does the weathering of the Tibetan Plateau have the ability to control the global climate?How to explain the modern-like global CO_(2) concentration starting at about 24 Ma?Here,a short space was taken to present a brainstorm about the above questions on account of existing geological pieces of evidence.Materials and methods In this paper,we integrate the formation and evolution of the Yangtze River and Pearl River,the origin and development of the Asian inland aridification-monsoon system,the Cenozoic tectonic uplift process of the Tibetan Plateau,and the westerly winds to discuss and analyze the relationship between the Cenozoic CO_(2) concentration changes and the uplift of the Tibetan Plateau and why the CO_(2) concentration similar to the present was formed at about 24 Ma.Results Similar correspondence of the surface uplift history of Xizang,other global mountains,and the declining CO_(2) concentration could support the theory Tibetan Plateau weathering inf luences CO_(2) concentration.Starting from 24 Ma,the most important character was the uplift and erosion of Xizang and Himalaya,collaborating with Ocean Iron Fertilization(OIF)together as an entity to control the atmospheric CO_(2) concentration because the great Asian rivers,Asian monsoons,and westerlies connected Xizang and surrounded seas together through materials transportation.Discussion Paleogeographic reconstructions from 40 Ma to 20 Ma illustrate that the main topographic change occurred in the Andes,Cordillera orogenic belt,and Xizang.We comprise a comprehensive set of evidence from independent data,which correspond temporally with the tipping point(about 24 Ma)of the atmospheric CO_(2) and we noticed that modern-like Asia monsoon,inland aridity,Asian great rivers,and climate zone formed at about 24 Ma and also there are tectonic activities for the Andes and Rockies.We raised the possibility that the modern-like atmospheric CO_(2) concentration at about 24 Ma was caused by the above geological factors.Here the rivers,monsoon,and westerlies are termed as“connectors”.In addition,these Asian rivers originated from Xizang,the monsoon,and inner Asian aridification are strongly a function of the uplift and growth of Xizang,thus,Xizang here is named as“trigger”.The distinct character of“trigger-connectors”model is that this not only takes the monsoon,westerlies,and the global great rivers into consideration but also expands the range which inf luences atmospheric CO_(2) concentration,from local points to a vast area since about 24 Ma,such as from Tibetan Plateau to Asia,including surrounded seas,after about 24 Ma.However,because the opening of the Late Oligocene-Early Miocene Antarctic periphery straits is highly coincident with the onset of modern-like global atmospheric CO_(2) concentration,we are forced to consider that they also had a significant impact on the reduction of atmospheric CO_(2) concentrations at this time.Conclusions“Trigger-connectors”was put forward to explain the Cenozoic CO_(2) variation,especially modern-like global CO_(2) concentration since about 24 Ma.Recommendations and perspectives Here we use the“trigger-connectors”model to explain the formation of modern-like CO_(2) concentrations starting at about 24 Ma,but there are still some problems.The most important premise for the“trigger-connectors”model is the constructed Cenozoic CO_(2) concentration record is reliable,which is the foundation of our hypothesis.In the future,potential improvements should focus on topographic reconstructions of Xizang and the global mountains.Here we have concentrated on Xizang in the considered timeslices but still,pay less attention to other global orogenic belts.Collaborations with geologist experts in those regions could provide valuable feedback to evaluate their potential role of them in CO_(2) evolution.What is more,considerable progress may be achieved with the addition and consideration of more and new geological data.展开更多
Sweet cherries ( Prunus avium L. cv. Napoleon) were stored in controlled atmospheres (CA) of high O(2) (70% O(2) + 0% CO(2)) or high CO(2) (5% O(2) + 10% CO(2)), in modified atmosphere package (MAP, (13% - 18%) O(2) +...Sweet cherries ( Prunus avium L. cv. Napoleon) were stored in controlled atmospheres (CA) of high O(2) (70% O(2) + 0% CO(2)) or high CO(2) (5% O(2) + 10% CO(2)), in modified atmosphere package (MAP, (13% - 18%) O(2) + (2% -4%) CO(2)) and in air (control) at 1 degreesC to investigate the effects of different O(2) and CO(2) concentrations on physiological properties, quality and storability of the fruits during storage. The results indicated that compared with other treatments, CA with high O(2) concentration decreased fruit decay and ethanol content, but increased the accumulation of malondialdehyde (MDA) and stimulated browning. CA with high CO(2) concentration inhibited polyphenol oxidase (PPO) activity, reduced MDA content, maintained vitamin C content and firmness, decreased fruit decay and browning. Soluble solids contents (SSC) were not significantly affected by different atmosphere treatments. 'Napoleon' fruits stored in 5% O(2) + 10% CO(2) for as long as 80 d were of good quality, but only 40, 20 and 30 d stored in MAP, 70% O(2) + 0% CO(2) and air, re-spectively.展开更多
The effects of CO 2 concentration on the morphological and anatomical characters of soybean (Glycine max) leaf were investigated by means of light microscopy and SEM.It was noticed that exomorphology did not show dra...The effects of CO 2 concentration on the morphological and anatomical characters of soybean (Glycine max) leaf were investigated by means of light microscopy and SEM.It was noticed that exomorphology did not show dramatic change,while stomatal density decreased with increasing CO 2 concentration.Under SEM,no epicuticular wax was observed on both abaxial and adaxial sides of the control group as well as on adaxial side of the treatment group.However,leaf surface of abaxial side was noticed to be densely covered with microasterisk epicuticular wax when they were exposed to CO 2 enriched environment.The epicuticular wax deposition was present in equal abundance on both stomatal and nonstomatal areas.Furthermore,leaf thickness increased significantly due largely to the origin of an extra layer of palisade in the treatment group.The results confirmed that CO 2 enrichment might enhance cell division and induce greater quantity of epicuticular wax.展开更多
The bark of Pteroce/tis tatarinowii is a raw material for manufacturing XuanPaper. The effects of Ca^(2+) concentrations on the accumulation of mineral elements in the bark,leaf and root of Pteroceltis tatarinowii wer...The bark of Pteroce/tis tatarinowii is a raw material for manufacturing XuanPaper. The effects of Ca^(2+) concentrations on the accumulation of mineral elements in the bark,leaf and root of Pteroceltis tatarinowii were studied under controlled conditions. The types ofHoagland nutrient solution with three Ca^(2+) concentrations levels (200, 400 and 600 μg·g^(-1))and a control (without Ca^(2+)) were designed to culture Pteroceltis tatarinowii. After 6 months,contents of seven mineral elements including Ca, K, Mg, Mn, Zn, Cu and Na in the root, leaf and barkwere analyzed. The results indicated that Ca accumulations content in the root, leaf and bark hadpositively relation with Ca^(2+) concentrations (200, 400, 600 μg · g^(-1)), and the order of theCa content in the three components was root>leaf>bark. Ca content in the root treated with 600 μg·g^(-1) Ca^(2+) concentrations was 5.5 times as high as that of the control, and about 1.4 times ashigh as that of the root treated in 200 and 400 μg/g Ca^(2+) concentrations respectively. On thecontrary, K and Mg contents in the root, leaf and bark were negatively related to Ca^(2+)concentrations, especially in the bark, and their accumulation trend followed the order ofleaf>root>bark. K content in the bark treated with 600 μg ·g^(-1) Ca^(2+) concentrations was 39.3%of that of the control, and was 79.0% and 91.8% of that of the bark treated with 200 μg ·g^(-1)and 400 μg ·g^(-1) Ca^(2+) concentrations respectively; Mg content in the bark treated with 600μg ·g^(-1) Ca^(2+) concentrations was 23.4% of that of the control, and was 27.1% and 35.4% ofthat of the bark treated with 200 and 400 μg·g^(-1) Ca^(2+) concentrations respectively. Comparedwith the control, the general tendency of Mn, Zn and Cu content decreased with increasing of Ca^(2+)concentrations and their contents were in the order: root>leaf>bark. Based on the results of thisstudy, the experiment has been useful for providing academic bases in improving the bark quality ofPteroceltis tatarinowii on non-limestone soil.展开更多
Wheat ( Triticum aestivum L.) plants were grown under ambient and doubled_CO 2(plus 350 μL/L) concentration in cylindrical open_top chamber to examine their effects on the ultrastructure, supramolecular architect...Wheat ( Triticum aestivum L.) plants were grown under ambient and doubled_CO 2(plus 350 μL/L) concentration in cylindrical open_top chamber to examine their effects on the ultrastructure, supramolecular architecture, absorption spectrum and low temperature (77 K) fluorescence emission spectrum of the chloroplasts from wheat leaves. The results were briefly summarized as follows: (1) The wheat leaves possessed normally developed chloroplasts with intact grana and stroma thylakoid membranes; The grana intertwined with stroma thylakoid membranes and increased slightly in stacking degree and the width of granum, in spite of more accumulated starch grains within the chloroplasts than those in control; (2) The particle density in the stacked region of the endoplasmic fracture face (EFs) and protoplasmic fracture face (PFs) and in the unstacked region the endoplasmic fracture face (EFu) and the protoplasmic fracture face (PFu) was significantly higher than that of control. Furthermore, in some cases many more particles on EFs faces of thylakoid membranes appeared as a paracrystalline particle array; (3) The variations in the structure of chloroplasts were consistent with the absorption spectra and the low temperature (77 K) fluorescence emission spectra of the chloroplasts developed under the doubled_CO 2 concentration. Results indicate that the capability of light energy absorption of chloroplasts and regulative capability of excitation energy distribution between PSⅡ and PSⅠ were raised by doubled_CO 2 concentration. This is very favorable for final productivity of wheat.展开更多
Foliar concentrations of starch and major nutrients N, P, K, Ca, and Mg along with specific leaf weight (SLW) were determined in the potato (Solanun tuberosum L.) cvs "Denali", "Norland "'and &...Foliar concentrations of starch and major nutrients N, P, K, Ca, and Mg along with specific leaf weight (SLW) were determined in the potato (Solanun tuberosum L.) cvs "Denali", "Norland "'and "Russet Burbank" grown for 35 days under the CO2 concentrations of 500, 1 000, 1 500 and 2 000 mol mol-1 at both 16 and 20℃ air temperature. The starch concentration, pooled from the three cultivars, increased with increasing CO2 concentration at both 16 and 20℃,, and was consistently higher at 16℃ than at 20℃. The SLW (g m-2) was positively related to the foliar starch concentration on the basis of leaf area or dry weight. The concentrations of N, P, Ca, and Mg in leaves were negatively related to starch concentration under 14% starch on a dry weight basis. Above 14%, there was no significant relationship between nutrient and starch concentrations . The similar patterns were seen when the SLW and nutrient concentrations were expressed on a starch-free basis. In contrast, the leaf concentration of K was not closely related to the starch concentration. The results indicated that the changes in SLW and concentrations of N, P, Ca, and Mg in potato leaves only partially resulted from the changed starch concentration.展开更多
Base on the principle and method of B-P neural network,the prediction model of SO2 concentration in urban atmosphere was established by using the statistical data of a city in southwest China from 1991 to 2009,so as t...Base on the principle and method of B-P neural network,the prediction model of SO2 concentration in urban atmosphere was established by using the statistical data of a city in southwest China from 1991 to 2009,so as to forecast atmospheric SO2 concentration in a city of southwest China.The results showed that B-P neural network applied in the prediction of SO2 concentration in urban atmosphere was reasonable and efficient with high accuracy and wide adaptability,so it was worthy to be popularized.展开更多
The bark of Pteroceltis tatarinowii is a raw material for manufacturing Xuan Paper. The effects of Ca2+ concentrations on the accumulation of mineral elements in the bark, leaf and root of Pteroceltis tatarinowii were...The bark of Pteroceltis tatarinowii is a raw material for manufacturing Xuan Paper. The effects of Ca2+ concentrations on the accumulation of mineral elements in the bark, leaf and root of Pteroceltis tatarinowii were studied under controlled condi-tions. The types of Hoagland nutrient solution with three Ca2+ concentrations levels (200, 400 and 600 靏g-1) and a control (without Ca2+) were designed to culture Pteroceltis tatarinowii. After 6 months, contents of seven mineral elements including Ca, K, Mg, Mn, Zn, Cu and Na in the root, leaf and bark were analyzed. The results indicated that Ca accumulations content in the root, leaf and bark had positively relation with Ca2+ concentrations (200, 400, 600 靏g-1), and the order of the Ca content in the three components was root】leaf】bark. Ca content in the root treated with 600 靏g-1 Ca2+ concentrations was 5.5 times as high as that of the control, and about 1.4 times as high as that of the root treated in 200 and 400 靏/g Ca2+ concentrations respectively. On the contrary, K and Mg contents in the root, leaf and bark were negatively related to Ca2+ concentrations, especially in the bark, and their accumulation trend followed the order of leaf】root】bark. K content in the bark treated with 600 靏g-1 Ca2+ con-centrations was 39.3% of that of the control, and was 79.0% and 91.8% of that of the bark treated with 200 靏g-1 and 400靏g-1 Ca2+ concentrations respectively; Mg content in the bark treated with 600 靏g-1 Ca2+ concentrations was 23.4% of that of the control, and was 27.1% and 35.4% of that of the bark treated with 200 and 400 靏g-1 Ca2+ concentrations respectively. Com-pared with the control, the general tendency of Mn, Zn and Cu content decreased with increasing of Ca2+ concentrations and their contents were in the order: root】leaf】bark. Based on the results of this study, the experiment has been useful for providing academic bases in improving the bark quality of Pteroceltis tatarinowii on non-limestone soil.展开更多
文摘Background,aim,and scope The tectonic uplift of the Cenozoic Tibetan Plateau has produced a chain effect,which is an excellent location for Earth system science research,and its uplift process,mechanism and environmental effects are the hot spot and frontier of the current research.The“Tibetan Plateau uplift-weathering-CO_(2) concentration-global climate change”model was put forward by Raymo and Ruddiman to interpret the Late Cenozoic climate change.However,there are still some questions suspended,such as does the weathering of the Tibetan Plateau have the ability to control the global climate?How to explain the modern-like global CO_(2) concentration starting at about 24 Ma?Here,a short space was taken to present a brainstorm about the above questions on account of existing geological pieces of evidence.Materials and methods In this paper,we integrate the formation and evolution of the Yangtze River and Pearl River,the origin and development of the Asian inland aridification-monsoon system,the Cenozoic tectonic uplift process of the Tibetan Plateau,and the westerly winds to discuss and analyze the relationship between the Cenozoic CO_(2) concentration changes and the uplift of the Tibetan Plateau and why the CO_(2) concentration similar to the present was formed at about 24 Ma.Results Similar correspondence of the surface uplift history of Xizang,other global mountains,and the declining CO_(2) concentration could support the theory Tibetan Plateau weathering inf luences CO_(2) concentration.Starting from 24 Ma,the most important character was the uplift and erosion of Xizang and Himalaya,collaborating with Ocean Iron Fertilization(OIF)together as an entity to control the atmospheric CO_(2) concentration because the great Asian rivers,Asian monsoons,and westerlies connected Xizang and surrounded seas together through materials transportation.Discussion Paleogeographic reconstructions from 40 Ma to 20 Ma illustrate that the main topographic change occurred in the Andes,Cordillera orogenic belt,and Xizang.We comprise a comprehensive set of evidence from independent data,which correspond temporally with the tipping point(about 24 Ma)of the atmospheric CO_(2) and we noticed that modern-like Asia monsoon,inland aridity,Asian great rivers,and climate zone formed at about 24 Ma and also there are tectonic activities for the Andes and Rockies.We raised the possibility that the modern-like atmospheric CO_(2) concentration at about 24 Ma was caused by the above geological factors.Here the rivers,monsoon,and westerlies are termed as“connectors”.In addition,these Asian rivers originated from Xizang,the monsoon,and inner Asian aridification are strongly a function of the uplift and growth of Xizang,thus,Xizang here is named as“trigger”.The distinct character of“trigger-connectors”model is that this not only takes the monsoon,westerlies,and the global great rivers into consideration but also expands the range which inf luences atmospheric CO_(2) concentration,from local points to a vast area since about 24 Ma,such as from Tibetan Plateau to Asia,including surrounded seas,after about 24 Ma.However,because the opening of the Late Oligocene-Early Miocene Antarctic periphery straits is highly coincident with the onset of modern-like global atmospheric CO_(2) concentration,we are forced to consider that they also had a significant impact on the reduction of atmospheric CO_(2) concentrations at this time.Conclusions“Trigger-connectors”was put forward to explain the Cenozoic CO_(2) variation,especially modern-like global CO_(2) concentration since about 24 Ma.Recommendations and perspectives Here we use the“trigger-connectors”model to explain the formation of modern-like CO_(2) concentrations starting at about 24 Ma,but there are still some problems.The most important premise for the“trigger-connectors”model is the constructed Cenozoic CO_(2) concentration record is reliable,which is the foundation of our hypothesis.In the future,potential improvements should focus on topographic reconstructions of Xizang and the global mountains.Here we have concentrated on Xizang in the considered timeslices but still,pay less attention to other global orogenic belts.Collaborations with geologist experts in those regions could provide valuable feedback to evaluate their potential role of them in CO_(2) evolution.What is more,considerable progress may be achieved with the addition and consideration of more and new geological data.
文摘Sweet cherries ( Prunus avium L. cv. Napoleon) were stored in controlled atmospheres (CA) of high O(2) (70% O(2) + 0% CO(2)) or high CO(2) (5% O(2) + 10% CO(2)), in modified atmosphere package (MAP, (13% - 18%) O(2) + (2% -4%) CO(2)) and in air (control) at 1 degreesC to investigate the effects of different O(2) and CO(2) concentrations on physiological properties, quality and storability of the fruits during storage. The results indicated that compared with other treatments, CA with high O(2) concentration decreased fruit decay and ethanol content, but increased the accumulation of malondialdehyde (MDA) and stimulated browning. CA with high CO(2) concentration inhibited polyphenol oxidase (PPO) activity, reduced MDA content, maintained vitamin C content and firmness, decreased fruit decay and browning. Soluble solids contents (SSC) were not significantly affected by different atmosphere treatments. 'Napoleon' fruits stored in 5% O(2) + 10% CO(2) for as long as 80 d were of good quality, but only 40, 20 and 30 d stored in MAP, 70% O(2) + 0% CO(2) and air, re-spectively.
文摘The effects of CO 2 concentration on the morphological and anatomical characters of soybean (Glycine max) leaf were investigated by means of light microscopy and SEM.It was noticed that exomorphology did not show dramatic change,while stomatal density decreased with increasing CO 2 concentration.Under SEM,no epicuticular wax was observed on both abaxial and adaxial sides of the control group as well as on adaxial side of the treatment group.However,leaf surface of abaxial side was noticed to be densely covered with microasterisk epicuticular wax when they were exposed to CO 2 enriched environment.The epicuticular wax deposition was present in equal abundance on both stomatal and nonstomatal areas.Furthermore,leaf thickness increased significantly due largely to the origin of an extra layer of palisade in the treatment group.The results confirmed that CO 2 enrichment might enhance cell division and induce greater quantity of epicuticular wax.
基金This paper is supported by National Natural Science Foundation of China (No. 39970608).
文摘The bark of Pteroce/tis tatarinowii is a raw material for manufacturing XuanPaper. The effects of Ca^(2+) concentrations on the accumulation of mineral elements in the bark,leaf and root of Pteroceltis tatarinowii were studied under controlled conditions. The types ofHoagland nutrient solution with three Ca^(2+) concentrations levels (200, 400 and 600 μg·g^(-1))and a control (without Ca^(2+)) were designed to culture Pteroceltis tatarinowii. After 6 months,contents of seven mineral elements including Ca, K, Mg, Mn, Zn, Cu and Na in the root, leaf and barkwere analyzed. The results indicated that Ca accumulations content in the root, leaf and bark hadpositively relation with Ca^(2+) concentrations (200, 400, 600 μg · g^(-1)), and the order of theCa content in the three components was root>leaf>bark. Ca content in the root treated with 600 μg·g^(-1) Ca^(2+) concentrations was 5.5 times as high as that of the control, and about 1.4 times ashigh as that of the root treated in 200 and 400 μg/g Ca^(2+) concentrations respectively. On thecontrary, K and Mg contents in the root, leaf and bark were negatively related to Ca^(2+)concentrations, especially in the bark, and their accumulation trend followed the order ofleaf>root>bark. K content in the bark treated with 600 μg ·g^(-1) Ca^(2+) concentrations was 39.3%of that of the control, and was 79.0% and 91.8% of that of the bark treated with 200 μg ·g^(-1)and 400 μg ·g^(-1) Ca^(2+) concentrations respectively; Mg content in the bark treated with 600μg ·g^(-1) Ca^(2+) concentrations was 23.4% of that of the control, and was 27.1% and 35.4% ofthat of the bark treated with 200 and 400 μg·g^(-1) Ca^(2+) concentrations respectively. Comparedwith the control, the general tendency of Mn, Zn and Cu content decreased with increasing of Ca^(2+)concentrations and their contents were in the order: root>leaf>bark. Based on the results of thisstudy, the experiment has been useful for providing academic bases in improving the bark quality ofPteroceltis tatarinowii on non-limestone soil.
文摘Wheat ( Triticum aestivum L.) plants were grown under ambient and doubled_CO 2(plus 350 μL/L) concentration in cylindrical open_top chamber to examine their effects on the ultrastructure, supramolecular architecture, absorption spectrum and low temperature (77 K) fluorescence emission spectrum of the chloroplasts from wheat leaves. The results were briefly summarized as follows: (1) The wheat leaves possessed normally developed chloroplasts with intact grana and stroma thylakoid membranes; The grana intertwined with stroma thylakoid membranes and increased slightly in stacking degree and the width of granum, in spite of more accumulated starch grains within the chloroplasts than those in control; (2) The particle density in the stacked region of the endoplasmic fracture face (EFs) and protoplasmic fracture face (PFs) and in the unstacked region the endoplasmic fracture face (EFu) and the protoplasmic fracture face (PFu) was significantly higher than that of control. Furthermore, in some cases many more particles on EFs faces of thylakoid membranes appeared as a paracrystalline particle array; (3) The variations in the structure of chloroplasts were consistent with the absorption spectra and the low temperature (77 K) fluorescence emission spectra of the chloroplasts developed under the doubled_CO 2 concentration. Results indicate that the capability of light energy absorption of chloroplasts and regulative capability of excitation energy distribution between PSⅡ and PSⅠ were raised by doubled_CO 2 concentration. This is very favorable for final productivity of wheat.
文摘Foliar concentrations of starch and major nutrients N, P, K, Ca, and Mg along with specific leaf weight (SLW) were determined in the potato (Solanun tuberosum L.) cvs "Denali", "Norland "'and "Russet Burbank" grown for 35 days under the CO2 concentrations of 500, 1 000, 1 500 and 2 000 mol mol-1 at both 16 and 20℃ air temperature. The starch concentration, pooled from the three cultivars, increased with increasing CO2 concentration at both 16 and 20℃,, and was consistently higher at 16℃ than at 20℃. The SLW (g m-2) was positively related to the foliar starch concentration on the basis of leaf area or dry weight. The concentrations of N, P, Ca, and Mg in leaves were negatively related to starch concentration under 14% starch on a dry weight basis. Above 14%, there was no significant relationship between nutrient and starch concentrations . The similar patterns were seen when the SLW and nutrient concentrations were expressed on a starch-free basis. In contrast, the leaf concentration of K was not closely related to the starch concentration. The results indicated that the changes in SLW and concentrations of N, P, Ca, and Mg in potato leaves only partially resulted from the changed starch concentration.
文摘Base on the principle and method of B-P neural network,the prediction model of SO2 concentration in urban atmosphere was established by using the statistical data of a city in southwest China from 1991 to 2009,so as to forecast atmospheric SO2 concentration in a city of southwest China.The results showed that B-P neural network applied in the prediction of SO2 concentration in urban atmosphere was reasonable and efficient with high accuracy and wide adaptability,so it was worthy to be popularized.
基金This paper is supported by National Natural Science Foundation of China (No. 39970608).
文摘The bark of Pteroceltis tatarinowii is a raw material for manufacturing Xuan Paper. The effects of Ca2+ concentrations on the accumulation of mineral elements in the bark, leaf and root of Pteroceltis tatarinowii were studied under controlled condi-tions. The types of Hoagland nutrient solution with three Ca2+ concentrations levels (200, 400 and 600 靏g-1) and a control (without Ca2+) were designed to culture Pteroceltis tatarinowii. After 6 months, contents of seven mineral elements including Ca, K, Mg, Mn, Zn, Cu and Na in the root, leaf and bark were analyzed. The results indicated that Ca accumulations content in the root, leaf and bark had positively relation with Ca2+ concentrations (200, 400, 600 靏g-1), and the order of the Ca content in the three components was root】leaf】bark. Ca content in the root treated with 600 靏g-1 Ca2+ concentrations was 5.5 times as high as that of the control, and about 1.4 times as high as that of the root treated in 200 and 400 靏/g Ca2+ concentrations respectively. On the contrary, K and Mg contents in the root, leaf and bark were negatively related to Ca2+ concentrations, especially in the bark, and their accumulation trend followed the order of leaf】root】bark. K content in the bark treated with 600 靏g-1 Ca2+ con-centrations was 39.3% of that of the control, and was 79.0% and 91.8% of that of the bark treated with 200 靏g-1 and 400靏g-1 Ca2+ concentrations respectively; Mg content in the bark treated with 600 靏g-1 Ca2+ concentrations was 23.4% of that of the control, and was 27.1% and 35.4% of that of the bark treated with 200 and 400 靏g-1 Ca2+ concentrations respectively. Com-pared with the control, the general tendency of Mn, Zn and Cu content decreased with increasing of Ca2+ concentrations and their contents were in the order: root】leaf】bark. Based on the results of this study, the experiment has been useful for providing academic bases in improving the bark quality of Pteroceltis tatarinowii on non-limestone soil.