Dysregulation of neurotransmitter metabolism in the central nervous system contributes to mood disorders such as depression, anxiety, and post–traumatic stress disorder. Monoamines and amino acids are important types...Dysregulation of neurotransmitter metabolism in the central nervous system contributes to mood disorders such as depression, anxiety, and post–traumatic stress disorder. Monoamines and amino acids are important types of neurotransmitters. Our previous results have shown that disco-interacting protein 2 homolog A(Dip2a) knockout mice exhibit brain development disorders and abnormal amino acid metabolism in serum. This suggests that DIP2A is involved in the metabolism of amino acid–associated neurotransmitters. Therefore, we performed targeted neurotransmitter metabolomics analysis and found that Dip2a deficiency caused abnormal metabolism of tryptophan and thyroxine in the basolateral amygdala and medial prefrontal cortex. In addition, acute restraint stress induced a decrease in 5-hydroxytryptamine in the basolateral amygdala. Additionally, Dip2a was abundantly expressed in excitatory neurons of the basolateral amygdala, and deletion of Dip2a in these neurons resulted in hopelessness-like behavior in the tail suspension test. Altogether, these findings demonstrate that DIP2A in the basolateral amygdala may be involved in the regulation of stress susceptibility. This provides critical evidence implicating a role of DIP2A in affective disorders.展开更多
The pathophysiology of Huntington's disease involves high levels of the neurotoxin quinolinic acid. Quinolinic acid accumulation results in oxidative stress, which leads to neurotoxicity. However, the molecular an...The pathophysiology of Huntington's disease involves high levels of the neurotoxin quinolinic acid. Quinolinic acid accumulation results in oxidative stress, which leads to neurotoxicity. However, the molecular and cellular mechanisms by which quinolinic acid contributes to Huntington's disease pathology remain unknown. In this study, we established in vitro and in vivo models of Huntington's disease by administering quinolinic acid to the PC12 neuronal cell line and the striatum of mice, respectively. We observed a decrease in the levels of hydrogen sulfide in both PC12 cells and mouse serum, which was accompanied by down-regulation of cystathionine β-synthase, an enzyme responsible for hydrogen sulfide production. However, treatment with NaHS(a hydrogen sulfide donor) increased hydrogen sulfide levels in the neurons and in mouse serum, as well as cystathionine β-synthase expression in the neurons and the mouse striatum, while also improving oxidative imbalance and mitochondrial dysfunction in PC12 cells and the mouse striatum. These beneficial effects correlated with upregulation of nuclear factor erythroid 2-related factor 2 expression. Finally, treatment with the nuclear factor erythroid 2-related factor 2inhibitor ML385 reversed the beneficial impact of exogenous hydrogen sulfide on quinolinic acid-induced oxidative stress. Taken together, our findings show that hydrogen sulfide reduces oxidative stress in Huntington's disease by activating nuclear factor erythroid 2-related factor 2,suggesting that hydrogen sulfide is a novel neuroprotective drug candidate for treating patients with Huntington's disease.展开更多
Islet beta cells(β-cells)produce insulin in response to high blood glucose levels,which is essential for preserving glucose homeostasis.Voltage-gated ion channels inβ-cells,including Na+,K+,and Ca2+channels,aid in t...Islet beta cells(β-cells)produce insulin in response to high blood glucose levels,which is essential for preserving glucose homeostasis.Voltage-gated ion channels inβ-cells,including Na+,K+,and Ca2+channels,aid in the release of insulin.The epithelial sodium channel alpha subunit(α-ENaC),a voltage-independent sodium ion channel,is also expressed in human pancreatic endocrine cells.However,there is no reported study on the function of ENaC in theβ-cells.In the current study,we found thatα-ENaC was expressed in human pancreatic glandule and pancreatic isletβ-cells.In the pancreas of db/db mice and high-fat diet-induced mice,and in mouse isletβ-cells(MIN6 cells)treated with palmitate,α-ENaC expression was increased.Whenα-ENaC was overexpressed in MIN6 cells,insulin content and glucose-induced insulin secretion were significantly reduced.On the other hand,palmitate injured isletβ-cells and suppressed insulin synthesis and secretion,but increasedα-ENaC expression in MIN6 cells.However,α-ENaC knockout(Scnn1a−/−)in MIN6 cells attenuatedβ-cell disorder induced by palmitate.Furthermore,α-ENaC regulated the ubiquitylation and degradation of sirtuin 2 inβ-cells.α-ENaC also modulatedβ-cell function in correlation with the inositol-requiring enzyme 1 alpha/X-box binding protein 1(IRE1α/XBP1)and protein kinase RNA-like endoplasmic reticulum kinase/C/EBP homologous protein(PERK/CHOP)endoplasmic reticulum stress pathways.These results suggest thatα-ENaC may play a novel role in insulin synthesis and secretion in theβ-cells,and the upregulation ofα-ENaC promotes isletβ-cell dysfunction.In conclusion,α-ENaC may be a key regulator involved in isletβ-cell damage and a potential therapeutic target for type 2 diabetes mellitus.展开更多
Abscisic acid(ABA),hydrogen peroxide(H_(2)O_(2)) and ascorbate(AsA)–glutathione(GSH)cycle are widely known for their participation in various stresses.However,the relationship between ABA and H_(2)O_(2) levels and th...Abscisic acid(ABA),hydrogen peroxide(H_(2)O_(2)) and ascorbate(AsA)–glutathione(GSH)cycle are widely known for their participation in various stresses.However,the relationship between ABA and H_(2)O_(2) levels and the AsA–GSH cycle under drought stress in wheat has not been studied.In this study,a hydroponic experiment was conducted in wheat seedlings subjected to 15%polyethylene glycol(PEG)6000–induced dehydration.Drought stress caused the rapid accumulation of endogenous ABA and H_(2)O_(2) and significantly decreased the number of root tips compared with the control.The application of ABA significantly increased the number of root tips,whereas the application of H_(2)O_(2) markedly reduced the number of root tips,compared with that under 15%PEG-6000.In addition,drought stress markedly increased the DHA,GSH and GSSG levels,but decreased the AsA levels,AsA/DHA and GSH/GSSG ratios compared with those in the control.The activities of the four enzymes in the AsA–GSH cycle were also markedly increased under drought stress,including glutathione reductase(GR),ascorbate peroxidase(APX),monodehydroascorbate reductase(MDHAR)and dehydroascorbate reductase(DHAR),compared with those in the control.However,the application of an ABA inhibitor significantly inhibited GR,DHAR and APX activities,whereas the application of an H_(2)O_(2) inhibitor significantly inhibited DHAR and MDHAR activities.Furthermore,the application of ABA inhibitor significantly promoted the increases of H_(2)O_(2) and the application of H_(2)O_(2) inhibitor significantly blocked the increases of ABA,compared with those under 15% PEG-6000.Taken together,the results indicated that ABA and H_(2)O_(2) probably interact under drought stress in wheat;and both of them can mediate drought stress by modulating the enzymes in AsA–GSH cycle,where ABA acts as the main regulator of GR,DHAR,and APX activities,and H_(2)O_(2) acts as the main regulator of DHAR and MDHAR activities.展开更多
基金supported by the STI 2030—Major Projects 2021ZD0204000,No.2021ZD0204003 (to XZ)the National Natural Science Foundation of China,Nos.32170973 (to XZ),32071018 (to ZH)。
文摘Dysregulation of neurotransmitter metabolism in the central nervous system contributes to mood disorders such as depression, anxiety, and post–traumatic stress disorder. Monoamines and amino acids are important types of neurotransmitters. Our previous results have shown that disco-interacting protein 2 homolog A(Dip2a) knockout mice exhibit brain development disorders and abnormal amino acid metabolism in serum. This suggests that DIP2A is involved in the metabolism of amino acid–associated neurotransmitters. Therefore, we performed targeted neurotransmitter metabolomics analysis and found that Dip2a deficiency caused abnormal metabolism of tryptophan and thyroxine in the basolateral amygdala and medial prefrontal cortex. In addition, acute restraint stress induced a decrease in 5-hydroxytryptamine in the basolateral amygdala. Additionally, Dip2a was abundantly expressed in excitatory neurons of the basolateral amygdala, and deletion of Dip2a in these neurons resulted in hopelessness-like behavior in the tail suspension test. Altogether, these findings demonstrate that DIP2A in the basolateral amygdala may be involved in the regulation of stress susceptibility. This provides critical evidence implicating a role of DIP2A in affective disorders.
基金supported by the National Natural Science Foundation of China,Nos.82271327 (to ZW),82072535 (to ZW),81873768 (to ZW),and 82001253 (to TL)。
文摘The pathophysiology of Huntington's disease involves high levels of the neurotoxin quinolinic acid. Quinolinic acid accumulation results in oxidative stress, which leads to neurotoxicity. However, the molecular and cellular mechanisms by which quinolinic acid contributes to Huntington's disease pathology remain unknown. In this study, we established in vitro and in vivo models of Huntington's disease by administering quinolinic acid to the PC12 neuronal cell line and the striatum of mice, respectively. We observed a decrease in the levels of hydrogen sulfide in both PC12 cells and mouse serum, which was accompanied by down-regulation of cystathionine β-synthase, an enzyme responsible for hydrogen sulfide production. However, treatment with NaHS(a hydrogen sulfide donor) increased hydrogen sulfide levels in the neurons and in mouse serum, as well as cystathionine β-synthase expression in the neurons and the mouse striatum, while also improving oxidative imbalance and mitochondrial dysfunction in PC12 cells and the mouse striatum. These beneficial effects correlated with upregulation of nuclear factor erythroid 2-related factor 2 expression. Finally, treatment with the nuclear factor erythroid 2-related factor 2inhibitor ML385 reversed the beneficial impact of exogenous hydrogen sulfide on quinolinic acid-induced oxidative stress. Taken together, our findings show that hydrogen sulfide reduces oxidative stress in Huntington's disease by activating nuclear factor erythroid 2-related factor 2,suggesting that hydrogen sulfide is a novel neuroprotective drug candidate for treating patients with Huntington's disease.
基金supported by the National Natural Science Foundation of China(Grant Nos.81870467 and 82270717 to XL,and 81970673 to FC)China Postdoctoral Science Foundation(Grant No.2023M731630 to XZhang)Postgraduate Research and Practice Innovation Program of Jiangsu Province(Grant No.KYCX21_1588 to XZhou).
文摘Islet beta cells(β-cells)produce insulin in response to high blood glucose levels,which is essential for preserving glucose homeostasis.Voltage-gated ion channels inβ-cells,including Na+,K+,and Ca2+channels,aid in the release of insulin.The epithelial sodium channel alpha subunit(α-ENaC),a voltage-independent sodium ion channel,is also expressed in human pancreatic endocrine cells.However,there is no reported study on the function of ENaC in theβ-cells.In the current study,we found thatα-ENaC was expressed in human pancreatic glandule and pancreatic isletβ-cells.In the pancreas of db/db mice and high-fat diet-induced mice,and in mouse isletβ-cells(MIN6 cells)treated with palmitate,α-ENaC expression was increased.Whenα-ENaC was overexpressed in MIN6 cells,insulin content and glucose-induced insulin secretion were significantly reduced.On the other hand,palmitate injured isletβ-cells and suppressed insulin synthesis and secretion,but increasedα-ENaC expression in MIN6 cells.However,α-ENaC knockout(Scnn1a−/−)in MIN6 cells attenuatedβ-cell disorder induced by palmitate.Furthermore,α-ENaC regulated the ubiquitylation and degradation of sirtuin 2 inβ-cells.α-ENaC also modulatedβ-cell function in correlation with the inositol-requiring enzyme 1 alpha/X-box binding protein 1(IRE1α/XBP1)and protein kinase RNA-like endoplasmic reticulum kinase/C/EBP homologous protein(PERK/CHOP)endoplasmic reticulum stress pathways.These results suggest thatα-ENaC may play a novel role in insulin synthesis and secretion in theβ-cells,and the upregulation ofα-ENaC promotes isletβ-cell dysfunction.In conclusion,α-ENaC may be a key regulator involved in isletβ-cell damage and a potential therapeutic target for type 2 diabetes mellitus.
基金This research was funded by the National Key Research and Development Program of China(2023YFD2301505).
文摘Abscisic acid(ABA),hydrogen peroxide(H_(2)O_(2)) and ascorbate(AsA)–glutathione(GSH)cycle are widely known for their participation in various stresses.However,the relationship between ABA and H_(2)O_(2) levels and the AsA–GSH cycle under drought stress in wheat has not been studied.In this study,a hydroponic experiment was conducted in wheat seedlings subjected to 15%polyethylene glycol(PEG)6000–induced dehydration.Drought stress caused the rapid accumulation of endogenous ABA and H_(2)O_(2) and significantly decreased the number of root tips compared with the control.The application of ABA significantly increased the number of root tips,whereas the application of H_(2)O_(2) markedly reduced the number of root tips,compared with that under 15%PEG-6000.In addition,drought stress markedly increased the DHA,GSH and GSSG levels,but decreased the AsA levels,AsA/DHA and GSH/GSSG ratios compared with those in the control.The activities of the four enzymes in the AsA–GSH cycle were also markedly increased under drought stress,including glutathione reductase(GR),ascorbate peroxidase(APX),monodehydroascorbate reductase(MDHAR)and dehydroascorbate reductase(DHAR),compared with those in the control.However,the application of an ABA inhibitor significantly inhibited GR,DHAR and APX activities,whereas the application of an H_(2)O_(2) inhibitor significantly inhibited DHAR and MDHAR activities.Furthermore,the application of ABA inhibitor significantly promoted the increases of H_(2)O_(2) and the application of H_(2)O_(2) inhibitor significantly blocked the increases of ABA,compared with those under 15% PEG-6000.Taken together,the results indicated that ABA and H_(2)O_(2) probably interact under drought stress in wheat;and both of them can mediate drought stress by modulating the enzymes in AsA–GSH cycle,where ABA acts as the main regulator of GR,DHAR,and APX activities,and H_(2)O_(2) acts as the main regulator of DHAR and MDHAR activities.