Palladium(Pd) nanostructures are highly promising electrocatalysts for the carbon dioxide electrochemical reduction(CO_(2) ER). At present, it is still challenge for the synthesis of Pd nanostructures with high activi...Palladium(Pd) nanostructures are highly promising electrocatalysts for the carbon dioxide electrochemical reduction(CO_(2) ER). At present, it is still challenge for the synthesis of Pd nanostructures with high activity, selectivity and stability. In this work, a facile PdII-complex pyrolysis method is applied to synthesize the high-quality one-dimensional heterostructured Pd/Pd O nanowires(Pd/Pd O H-NWs).The as-prepared Pd/Pd O H-NWs have a large electrochemically active surface area, abundant defects and Pd/Pd O heterostructure. Electrochemical measurement results reveal that Pd/Pd O H-NWs exhibit up to 94% CO Faraday efficiency with a current density of 11.6 m A cm^(-2) at an applied potential of -0.8 V. Meanwhile, Pd/Pd O H-NWs can achieve a stable catalytic process of 12 h for CO_(2) ER. Such outstanding CO_(2) ER performance of Pd/Pd O H-NWs has also been verified in the flow cell test. The density functional theory calculations indicate that Pd/Pd O heterostructure can significantly weaken the CO adsorption on Pd sites, which improves the CO tolerance and consequently enhances the catalytic performance of Pd/Pd O H-NWs for CO_(2) ER. This work highlights a facile complex pyrolysis strategy for the synthesis of Pd-based CO_(2) ER catalysts and provides a new application instance of metal/metal oxide heterostructure in electrocatalysis.展开更多
The Ni−MoO_(2) heterostructure was synthesized in suit on porous bulk NiMo alloy by a facile powder metallurgy and hydrothermal method.The results of field emission scanning electron microscopy(SEM),field emission tra...The Ni−MoO_(2) heterostructure was synthesized in suit on porous bulk NiMo alloy by a facile powder metallurgy and hydrothermal method.The results of field emission scanning electron microscopy(SEM),field emission transmission electron microscopy(TEM)and X-ray photoelectron spectroscopy(XPS)reveal that the as-prepared electrode possesses the heterostructure and a layer of Ni(OH)_(2) nanosheets is formed on the surface of Ni−MoO_(2) electrode simultaneously after hydrothermal treatment,which provides abundant interface and much active sites,as well as much active specific surface area.The results of hydrogen evolution reaction indicate that the Ni−MoO_(2) heterostructure electrode exhibits excellent catalytic performance,requiring only 41 mV overpotential to reach the current density of 10 mA/cm^(2).It also possesses a small Tafel slope of 52.7 mV/dec and long-term stability of electrolysis in alkaline medium.展开更多
The electrocatalytic dechlorination of 4-chlorophenol(4-CP) in aqueous solution was studied by using a palladium-nickel bimetallic composite catalyst deposited on nickel foam(Pd-Ni/Ni foam) as the cathode.The Pd-Ni co...The electrocatalytic dechlorination of 4-chlorophenol(4-CP) in aqueous solution was studied by using a palladium-nickel bimetallic composite catalyst deposited on nickel foam(Pd-Ni/Ni foam) as the cathode.The Pd-Ni composite particles with a diameter of less than 50 nm were finely dispersed on the Ni foam surface.The Pd-Ni/Ni foam electrode exhibited higher dechlorination efficiency than single Pd or Ni supported on Ni foam electrodes.High-performance liquid chromatography analysis verified that phenol was the main dechlorination product.For an applied current of 20 mA,a bulk solution temperature of 15℃,and an initial 4-CP concentration of 1 mmol·L-1,dechlorination efficiency of 82% was observed.Based on electrochemical impedance spectroscopic results and the current efficiency of 4-CP dechlorination at different applied currents on various electrodes,the authors determined the rate-limiting step under various polarization conditions in the experiments.展开更多
基金supported by the National Natural Science Foundation of China(51873100)Natural Science Foundation of Shaanxi Province(2020JZ-23)+2 种基金the Fundamental Research Funds for the Central Universities(GK202101005 and 2021CBLZ004)the Innovation Team Project for Graduate Student at Shaanxi Normal University(TD2020048Y)the 111 Project(B14041)。
文摘Palladium(Pd) nanostructures are highly promising electrocatalysts for the carbon dioxide electrochemical reduction(CO_(2) ER). At present, it is still challenge for the synthesis of Pd nanostructures with high activity, selectivity and stability. In this work, a facile PdII-complex pyrolysis method is applied to synthesize the high-quality one-dimensional heterostructured Pd/Pd O nanowires(Pd/Pd O H-NWs).The as-prepared Pd/Pd O H-NWs have a large electrochemically active surface area, abundant defects and Pd/Pd O heterostructure. Electrochemical measurement results reveal that Pd/Pd O H-NWs exhibit up to 94% CO Faraday efficiency with a current density of 11.6 m A cm^(-2) at an applied potential of -0.8 V. Meanwhile, Pd/Pd O H-NWs can achieve a stable catalytic process of 12 h for CO_(2) ER. Such outstanding CO_(2) ER performance of Pd/Pd O H-NWs has also been verified in the flow cell test. The density functional theory calculations indicate that Pd/Pd O heterostructure can significantly weaken the CO adsorption on Pd sites, which improves the CO tolerance and consequently enhances the catalytic performance of Pd/Pd O H-NWs for CO_(2) ER. This work highlights a facile complex pyrolysis strategy for the synthesis of Pd-based CO_(2) ER catalysts and provides a new application instance of metal/metal oxide heterostructure in electrocatalysis.
基金the financial supports from the National Natural Science Foundation of China(Nos.52161040,51862026)the Natural Science Foundation of Jiangxi Province,China(Nos.20202ACBL214011,20192ACBL21048)the Aeronautical Science Foundation of China(No.2017ZF56027)。
文摘The Ni−MoO_(2) heterostructure was synthesized in suit on porous bulk NiMo alloy by a facile powder metallurgy and hydrothermal method.The results of field emission scanning electron microscopy(SEM),field emission transmission electron microscopy(TEM)and X-ray photoelectron spectroscopy(XPS)reveal that the as-prepared electrode possesses the heterostructure and a layer of Ni(OH)_(2) nanosheets is formed on the surface of Ni−MoO_(2) electrode simultaneously after hydrothermal treatment,which provides abundant interface and much active sites,as well as much active specific surface area.The results of hydrogen evolution reaction indicate that the Ni−MoO_(2) heterostructure electrode exhibits excellent catalytic performance,requiring only 41 mV overpotential to reach the current density of 10 mA/cm^(2).It also possesses a small Tafel slope of 52.7 mV/dec and long-term stability of electrolysis in alkaline medium.
文摘The electrocatalytic dechlorination of 4-chlorophenol(4-CP) in aqueous solution was studied by using a palladium-nickel bimetallic composite catalyst deposited on nickel foam(Pd-Ni/Ni foam) as the cathode.The Pd-Ni composite particles with a diameter of less than 50 nm were finely dispersed on the Ni foam surface.The Pd-Ni/Ni foam electrode exhibited higher dechlorination efficiency than single Pd or Ni supported on Ni foam electrodes.High-performance liquid chromatography analysis verified that phenol was the main dechlorination product.For an applied current of 20 mA,a bulk solution temperature of 15℃,and an initial 4-CP concentration of 1 mmol·L-1,dechlorination efficiency of 82% was observed.Based on electrochemical impedance spectroscopic results and the current efficiency of 4-CP dechlorination at different applied currents on various electrodes,the authors determined the rate-limiting step under various polarization conditions in the experiments.