Cu nanoparticles supported on a variety of oxide supports, including SiO2, TiO2, ZrO2, Al2O3, MgO and ZnO, were investigated for the hydrogenolysis of biomass‐derived furfuryl alcohol to1,2‐pentanediol and 1,5‐pent...Cu nanoparticles supported on a variety of oxide supports, including SiO2, TiO2, ZrO2, Al2O3, MgO and ZnO, were investigated for the hydrogenolysis of biomass‐derived furfuryl alcohol to1,2‐pentanediol and 1,5‐pentanediol. A Cu‐Al2O3 catalyst with 10 wt% Cu loading prepared by a co‐precipitation method exhibited the best performance in terms of producing pentanediols compared with the other materials. This catalyst generated an 85.8% conversion and a 70.3% combined selectivity for the target pentanediols at 413 K and 8 MPa H2 over an 8‐h reaction. The catalyst could also be recycled over repeated reaction trials without any significant decrease in productivity. Characterizations with X‐ray diffraction, NH3/CO2‐temperature programmed desorption, N2 adsorption,transmission electron microscopy and N2 O chemisorption demonstrated that intimate and effective interactions between Cu particles and the acidic Al2O3 support in this material greatly enhanced its activity and selectivity. The promotion of the hydrogenolysis reaction was found to be especially sensitive to the Cu particle size, and the catalyst with Cu particles 1.9 to 2.4 nm in size showed the highest turnover frequency during the synthesis of pentanediols.展开更多
Polybutene-1 was synthesized stereoselectively with the precursor η(5)-(pentamethyl-cyclopentadienyl) tribenzyloxide titanium (Cp*Ti(OBz)3) and methylaluminoxane (MAO). The effects of polymerization conditions, trime...Polybutene-1 was synthesized stereoselectively with the precursor η(5)-(pentamethyl-cyclopentadienyl) tribenzyloxide titanium (Cp*Ti(OBz)3) and methylaluminoxane (MAO). The effects of polymerization conditions, trimethyl alumina (TMA) content in MAO and temperature on the crystalline and molecular weight of the products, and catalytic activity were investigated. The structural properties of the polybutene-1 were characterized with (13)C NMR and WAXD.展开更多
The selective hydrogenolysis of glycerol to 1,3-propanediol(1,3-PDO)is an attractive reaction due to the high demand for valorization of huge excess amounts of glycerol supply as well as the important application of 1...The selective hydrogenolysis of glycerol to 1,3-propanediol(1,3-PDO)is an attractive reaction due to the high demand for valorization of huge excess amounts of glycerol supply as well as the important application of 1,3-PDO in polyester industry.Nevertheless,the formation of 1,3-PDO is thermodynamically less favorable than 1,2-PDO,which necessitates the development of efficient catalysts to manipulate the reaction kinetics towards the 1,3-PDO formation.Among others,Pt-W based catalysts have shown promising activities and selectivities of 1,3-PDO although the reaction mechanism is not well addressed at the molecular level.In this short review,we have compared the performances of different Pt-W based catalysts and discussed the key factors influencing the activity and selectivity.Three possible reaction mechanisms have been discussed in terms of the synergy between Pt and WO_x and the origin of acid sites.Finally,the long-term stability of the Pt-W catalysts has been discussed.We hope this review will provide useful information for the development of more efficient catalysts for this important reaction.展开更多
Ceramic ultrafiltration membranes were used to separate titanium silicalite-1 (TS-1) catalysts from the slurry of catalytic ammoximation of cyclohexanone to oxime. Silica was shown to have a great effect on membrane...Ceramic ultrafiltration membranes were used to separate titanium silicalite-1 (TS-1) catalysts from the slurry of catalytic ammoximation of cyclohexanone to oxime. Silica was shown to have a great effect on membrane fouling in the alkaline environment of this system. In the ammoximation system, there are three main silica sources, which are residual silica on the catalyst particles surface during preparation, silica dissolved from TS-1 catalyst particles by ammonia solvent, and silica sol added into the reaction slurry to inhibit the dissolution erosion of the TS-1 catalyst. The silica dissolved by ammonia has been proved to influence membrane fouling most among the three silica sources. This was because the amount of silica dissolved by ammonia was the largest, and the polymerization of silica monomers at high concentration caused colloid particles formation, which led to a dense cake layer depositing on the membrane surface. Meanwhile, the size reduction of catalyst particles caused by alkaline dissolution also increased specific resistances of cake layers.展开更多
A new solid acid catalyst,SO4^2-/TiO2 modified with tin,was prepared using a sol-gel method and its physicochemical properties were revealed by nitrogen adsorption-desorption,X-ray powder diffraction,scanning electron...A new solid acid catalyst,SO4^2-/TiO2 modified with tin,was prepared using a sol-gel method and its physicochemical properties were revealed by nitrogen adsorption-desorption,X-ray powder diffraction,scanning electron microscopy,Fourier transform infrared spectroscopy,infrared spectroscopy of adsorbed pyridine,temperature-programmed desorption of ammonia and thermal gravimetric analysis.The structure,acidity and thermal stability of the SO4^2-/TiO2-SnO2 catalyst were studied.Incorporating tin enlarged the specific surface area and decreased crystallite size of the SO4^2-/TiO2 catalyst.The total acid sites of the modified catalyst increased and Bronsted acid strength remarkably increased with increasing tin content.The decomposition temperature of sulfate radical in the modified catalyst was 100 ℃ greater and its mass loss was more than twice that of the SO4^2-/TiO2 catalyst.The SO4^2-/TiO2-SnO2 catalyst was designed to synthesize 1,6-hexanediol diacrylate by esterification of 1,6-hexanediol with crylic acid.The yield of 1,6-hexanediol diacrylate exceeded 87% under the optimal reaction conditions:crylic acid to 1,6-hexanediol molar ratio = 3.5,catalyst loading = 7%,reaction temperature = 130 ℃ and reaction time = 3 h.The modified catalyst exhibited excellent reusability and after 10 cycles the conversion of 1,6-hexanediol was above 81%.展开更多
The intrinsic kinetics of oxidative dehydrogenation of propane with CO2 has been investigated over Cr/MSU-1 catalyst in a fixed bed reactor. Without limitations of both internal and external diffusion, intrinsic kinet...The intrinsic kinetics of oxidative dehydrogenation of propane with CO2 has been investigated over Cr/MSU-1 catalyst in a fixed bed reactor. Without limitations of both internal and external diffusion, intrinsic kinetic data were obtained under the following conditions: 490-530 °C, space velocity of 3600?6000 mL·h-1·g-1 and 3/1 molar ratio for CO2/C3H8 under normal pressure. Based on Langmuir-Hinshelwood mechanism, the kinetic models were established, and they were validated by statistical analysis. The parameters were estimated using Simplex Method combined with Universal Global Optimization Algorithm. The model, taking the surface reaction process as the rate-determining step, is the best one in agreement with the experimental data.展开更多
Although the preparation of ZSM-5@silicalite-1(ZS) core–shell catalysts has been reported in the literature,their selectivity to para-xylene(PX)in the toluene alkylation with methanol is difficult to control.Here we ...Although the preparation of ZSM-5@silicalite-1(ZS) core–shell catalysts has been reported in the literature,their selectivity to para-xylene(PX)in the toluene alkylation with methanol is difficult to control.Here we present the effects of water and ZSM-5 adding amounts in the synthesis solution,the hydrothermal synthesis time,and the Si/Al ratio of core ZSM-5 on the catalytic performance of ZS core–shell catalysts.The ZS core–shell catalysts were characterized by X-ray diffraction (XRD),N_2 adsorption,and NH_3 temperature-programmed desorption (NH_3-TPD) techniques.The highest PX selectivity of 95.5%was obtained for the ZS(Si/Al=140) catalyst prepared in the synthesis solution with a molar ratio of 0.2 TPAOH:1TEOS:250H_2O at 175°C and 10 r·min^(-1) for only 2 h and the corresponding toluene conversion is as high as 22.8% for the alkylation of toluene with methanol.展开更多
The transition metals (Cu, Co, and Fe) were applied to modify Ni/Ce0.2Zr0.1Al0.7Oδ catalyst. The effects of transition metals on the catalytic properties of Ni/Ce0.2Zr0.1Al0.7Oδ autothermal reforming of methane we...The transition metals (Cu, Co, and Fe) were applied to modify Ni/Ce0.2Zr0.1Al0.7Oδ catalyst. The effects of transition metals on the catalytic properties of Ni/Ce0.2Zr0.1Al0.7Oδ autothermal reforming of methane were investigated. The Ni-supported catalysts were characterized by XRD, TPR and XPS. Tests in autothermal reforming of methane to hydrogen showed that the addition of transition metals (Cu and Co) significantly increased the activity of catalyst under the conditions of lower reaction temperature, and Ni/Cu0.05Ce0.2Zr0.1Al0.65Oδ was found to have the highest conversion of CH4 among all catalysts in the operation temperatures ranging from 923 K to 1023 K. TPR, XRD and XPS measurements indicated that the cubic phases of CexZr1-xO2 solid solution were formed in the preparation process of catalysts. Strong interaction was found to exist between NiO and CexZr1-xO2 solid solution. The addition of Cu improved the dispersion of NiO, inhibited the formation of NiAl2O4, and thus significantly promoted the activity of the catalyst Ni/Cu0.05Ce0.2Zr0.1Al0.65Oδ展开更多
The Co-incorporated Ce1-xZrxO2 catalysts were prepared by co-precipitation for carbon dioxide reforming of methane.The ratio of Ce to Zr was varied to optimize the performances of co-precipitated Co-Ce-Zr-Ox catalysts...The Co-incorporated Ce1-xZrxO2 catalysts were prepared by co-precipitation for carbon dioxide reforming of methane.The ratio of Ce to Zr was varied to optimize the performances of co-precipitated Co-Ce-Zr-Ox catalysts.The prepared catalysts were characterized by various physico-chemical characterization techniques including TPR,X-ray diffraction,N2 adsorption at low temperature,XPS and CO2-TPSR.The co-precipitated Co-Ce0.8Zr0.2O2 sample containing 16% CoO exhibited a higher catalytic activity among the five catalysts,and the activity was maintained without significant loss during the reaction for 60 h.Under the conditions of 750 ℃,0.1 MPa,36000 ml/(h gcat),and CO2/CH4 molar ratio of 1:1,the CO2 conversion over this catalyst was 75% while the CH4 conversion was 67%.The cubic Ce0.8Zr0.2O2 facilitated a higher dispersion and a higher reducibility of the cobalt component,and the apparent activation energy for Co-Ce0.8Zr0.2O2 sample was 49.1 kJ/mol in the CO2/CH4 reforming reaction.As a result,the Co-Ce0.8Zr0.2O2 sample exhibited a higher activity and stability for the reforming of CH4 with CO2.展开更多
The polymerization of 1-octene with Nd(P_(204))_3-AlEt_3 catalyst has been successfully carried out for the first time.Some features of polymerization of 1-octene are described.The 1-octene oligomer prepared has an av...The polymerization of 1-octene with Nd(P_(204))_3-AlEt_3 catalyst has been successfully carried out for the first time.Some features of polymerization of 1-octene are described.The 1-octene oligomer prepared has an average molecular weight of about 10~3 with molecular weight distribution of about 2.It has a terminal double bond,which can be transferred into terminal carboxy group by direct oxidation with KMnO_4 in acidic solution, and then can be esterified with polyglycol.展开更多
A series of Ti/Mg supported catalysts are prepared by using ball-milled mixtures of MgCl2-ethanol adducts and NaCl as supports, and 1-hexene polymerizations catalyzed by the novel catalysts are studied. It is found th...A series of Ti/Mg supported catalysts are prepared by using ball-milled mixtures of MgCl2-ethanol adducts and NaCl as supports, and 1-hexene polymerizations catalyzed by the novel catalysts are studied. It is found that the molecular weight distribution of poly(1-hexene) becomes apparently narrower when catalysts with doped supports are used, indicating that changing the structure of the support is an effective way to regulate the active center distribution of heterogeneous Ziegler-Natta catalyst.展开更多
Silicalite-1(S1)foam was functionalized by supporting manganese-cobalt(Mn-Co)mixed oxides to develop the structured hierarchical catalyst(Mn-Co@SlF)for catalytic combustion for the first time.The self-supporting S1 fo...Silicalite-1(S1)foam was functionalized by supporting manganese-cobalt(Mn-Co)mixed oxides to develop the structured hierarchical catalyst(Mn-Co@SlF)for catalytic combustion for the first time.The self-supporting S1 foam with hierarchical porosity was prepared via hydrothermal synthesis with polyurethane(PU)foam as the template.Subsequently,Mn-Co oxide nano sheets were uniformly grown on the surface of S1 foams under hydrothermal conditions to prepare the structured hierarchical catalyst with specific surface area of 354 m^2·g^-1,micropore volume of 0.141 cm^3·g^-1 and total pore volume of 0.217 cm3·g^-1,as well as a good capacity to adsorb toluene(1.7 mmol·g^-1 at p/p0=0.99).Comparative catalytic combustion of toluene of over developed structured catalyst Mn-Co@SlF was performed against the control catalysts of bulk Mn-Co@S1(i.e.,the crushed Mn-Co@SlF)and unsupported Mn-Co oxides(i.e.,Mn-Co).Mn-Co@SlF exhibited comparatively the best catalytic performance,that is,complete and stable toluene conversion at 2480 C over 65 h due to the synergy between Mn-Co oxides and S1 foam,which provided a large number of oxygen vacancies,high redox capacity.In addition,the hierarchical porous structure also improved the accessibility of active sites and facilitated the global mass transfer across the catalyst bed,being beneficial to the catalysis and catalyst longevity.展开更多
C1 chemistry based on synthesis gas, methane, and carbon dioxide offers many routes to industrial chemicals. The reactions related to the synthesis of gas can be classified into direct and indirect approach for making...C1 chemistry based on synthesis gas, methane, and carbon dioxide offers many routes to industrial chemicals. The reactions related to the synthesis of gas can be classified into direct and indirect approach for making such products, such as acetic acid, dimethyl ether, and alcohol. Catalytic syngas processing is currently done at high temperatures and pressures, conditions that could be unfavorable for the life of the catalyst. Another issue of C1 chemistry is related to the methane-initiated process. It has been known that direct methane conversions are still suffering from low yields and selectivity of products resulting in unprofitable ways to produce products, such as higher hydrocarbons, methanol, and so on. However, many experts and researchers are still trying to find the best method to overcome these barriers, for example, by finding the best catalyst to reduce the high-energy barrier of the reactions and conduct only selective catalyst-surface reactions. The appli- cation of Yttria-Stabilized Zirconia (YSZ) and its combination with other metals for catalyzing purposes are increasing. The existence of an interesting site that acts as oxygen store could be the main reason for it. Moreover, formation of intermediate species on the surface of YSZ also contributes significantly in increasing the production of some specific products. Understanding the phenomena happening inside could be necessary. In this article, the use of YSZ for some C1 chemistry reactions was discussed and reviewed.展开更多
1-Decene was oligomerized over the supported AlCl3/γ-Al2O3 catalyst in a fixed-bed reactor. The effects of temperature and LHSV on oligomerization of 1-decene were investigated and the synthetic PAO was characterized...1-Decene was oligomerized over the supported AlCl3/γ-Al2O3 catalyst in a fixed-bed reactor. The effects of temperature and LHSV on oligomerization of 1-decene were investigated and the synthetic PAO was characterized with GC technique. Furthermore, the life of immobilized catalyst was tested and the mechanism of catalyst deactivation was discussed. The results showed that with an increasing temperature, the PAO yield increased and the kinematic viscosity of oil decreased. The GC results indicated that the synthesized PAO was a mixture consisting of dimers, trimers, tetramers and pentamers. The results of chloride content measurements and BET tests showed that catalyst deactivation could be mainly attributed to the loss of active components.展开更多
A highly efficient and green process was developed for the synthesis of useful 5-amino-1-pentanol(5-AP)from biomass-derived dihydropyran by coupling the in situ generation of 5-hydroxypentanal(5-HP,via the ring-openin...A highly efficient and green process was developed for the synthesis of useful 5-amino-1-pentanol(5-AP)from biomass-derived dihydropyran by coupling the in situ generation of 5-hydroxypentanal(5-HP,via the ring-opening tautomerization of 2-hydroxytetrahydropyran(2-HTHP))and its reductive amination over supported Ni catalysts.The catalytic performances of the supported Ni catalysts on different oxides including SiO2,TiO2,ZrO2,γ-Al2 O3,and MgO as well as several commercial hydrogenation catalysts were investigated.The Ni/ZrO2 catalyst presented the highest 5-AP yield.The characterization results of the oxide-supported Ni catalysts showed that the Ni/ZrO2 catalyst possessed high reducibility and a high surface acid density,which lead to the enhanced activity and selectivity of the catalyst.The effect of reaction parameters on the catalytic performance of the Ni/ZrO2 catalyst was studied,and a high 5-AP yield of 90.8%was achieved in the reductive amination of 2-HTHP aqueous solution under mild conditions of 80℃and 2 MPa H2.The stability of the Ni/ZrO2 catalyst was studied using a continuous flow reactor,and only a slight decrease in the 5-AP yield was observed after a 90-h time-on-stream.Additionally,the reaction pathways for the reductive amination of 2-HTHP to synthesize 5-AP were proposed.展开更多
A mechanochemical redox reaction between KMnO4 and CoCl2 was developed to obtain a CoxMn1-xOy catalyst with a specific surface area of 479 m^2 g^-1,which was higher than that obtained using a co-precipitation(CP)metho...A mechanochemical redox reaction between KMnO4 and CoCl2 was developed to obtain a CoxMn1-xOy catalyst with a specific surface area of 479 m^2 g^-1,which was higher than that obtained using a co-precipitation(CP)method(34 m2 g^-1),sol-gel(SG)method(72 m^2 g^-1),or solution redox process(131 m^2 g^-1).During catalytic combustion,this CoxMn1-xOy catalyst exhibited better activity(T100 for propylene=~200℃)than the control catalysts obtained using the SG(325℃)or CP(450℃)methods.The mechanical action,mainly in the form of kinetic energy and frictional heating,may generate a high degree of interstitial porosity,while the redox reaction could contribute to good dispersion of cobalt and manganese species.Moreover,the as-prepared CoxMn1-xOy catalyst worked well in the presence of water vapor(H2O 4.2%,>60 h)or SO2(100 ppm)and at high temperature(400℃,>60 h).The structure MnO2·(CoOOH)2.93 was suggested for the current CoxMn1-xOy catalyst.This catalyst could be extended to the total oxidation of other typical hydrocarbons(T90=150°C for ethanol,T90=225°C for acetone,T90=250℃for toluene,T90=120℃for CO,and T90=540℃for CH4).Scale-up of the synthesis of CoxMn1-xOy catalyst(1 kg)can be achieved via ball milling,which may provide a potential strategy for real world catalysis.展开更多
A series of LaAl 1-xFe xO 3 catalysts prepared with lanthanum nitrate, aluminium nitrate and iron nitrate was investigated in catalytical syntheses of carbon nanotubes with high yields and purity. The properties ...A series of LaAl 1-xFe xO 3 catalysts prepared with lanthanum nitrate, aluminium nitrate and iron nitrate was investigated in catalytical syntheses of carbon nanotubes with high yields and purity. The properties of carbon nanotubes prepared by the method of CVD(chemical vapor deposition) with n-hexane as the carbon resource were studied and it was shown that the diameter of carbon nanotubes can be controlled by the molar ratio of iron to aluminum in the catalysts and that the diameter of carbon nanotubes changes a little with the decrease of the iron content in the catalysts. From the TEM pictures of carbon nanotubes, it can be found that the LaAl 1-xFe xO 3 catalysts have a significant influence on the wall thickness of the carbon nanotubes, whereas they have little influence on the inner diameter of the carbon nanotubes.展开更多
Ce x Ti 1- x O 2 mixed oxides of different mole ratios ( x =0, 0.1, 0.2~0.9, 1.0) were prepared by co precipitation of TiCl 4 with Ce(NO 3) 3 and then loaded with different amounts of CuO. The effe...Ce x Ti 1- x O 2 mixed oxides of different mole ratios ( x =0, 0.1, 0.2~0.9, 1.0) were prepared by co precipitation of TiCl 4 with Ce(NO 3) 3 and then loaded with different amounts of CuO. The effects of CuO on NO+CO reaction were investigated, and the structure and reductive properties of various CuO/Ce x Ti 1- x O 2 were characterized by the methodologies of BET, TPR and XRD. The results show that different Ce/Ti mole ratios and calcination temperatures induce changes of structure and reductive properties of the Ce x Ti 1- x O 2 mixed oxides. When x =0.1~0.5, amorphous CeTi 2O 6 phase mainly forms at 650 ℃ compared to the formation of CeTi 2O 6 which crystallizes at 800 ℃. When x >0.6, some TiO 2 enters the CeO 2 lattice and a CeO 2 TiO 2 solid solution is formed. The activity of 6%CuO/Ce x Ti 1- x O 2 calcined at 650 ℃ is largely affected by the x values, which is the highest when x =0.3, 0.4 and 0.9. The NO conversion reaches 70% at a reaction temperature of 150 ℃. By comparison, the x values have little effect on the activity of 6%CuO/Ce x Ti 1- x O 2 calcined at 800 ℃ . There are strong interactions between CuO and CeTi 2O 6, i.e., formation of the CeTi 2O 6 phase shifts the CuO reduction peak temperature from 380 to 200 ℃, and CuO, in turn, shifts the CeTi 2O 6 reduction peak temperature from 600 to 300 ℃.展开更多
基金supported by the National Natural Science Foundation of China(2113301121203221+1 种基金21473224)the Natural Science Foundation of Gansu Province(1308RJZA281)~~
文摘Cu nanoparticles supported on a variety of oxide supports, including SiO2, TiO2, ZrO2, Al2O3, MgO and ZnO, were investigated for the hydrogenolysis of biomass‐derived furfuryl alcohol to1,2‐pentanediol and 1,5‐pentanediol. A Cu‐Al2O3 catalyst with 10 wt% Cu loading prepared by a co‐precipitation method exhibited the best performance in terms of producing pentanediols compared with the other materials. This catalyst generated an 85.8% conversion and a 70.3% combined selectivity for the target pentanediols at 413 K and 8 MPa H2 over an 8‐h reaction. The catalyst could also be recycled over repeated reaction trials without any significant decrease in productivity. Characterizations with X‐ray diffraction, NH3/CO2‐temperature programmed desorption, N2 adsorption,transmission electron microscopy and N2 O chemisorption demonstrated that intimate and effective interactions between Cu particles and the acidic Al2O3 support in this material greatly enhanced its activity and selectivity. The promotion of the hydrogenolysis reaction was found to be especially sensitive to the Cu particle size, and the catalyst with Cu particles 1.9 to 2.4 nm in size showed the highest turnover frequency during the synthesis of pentanediols.
文摘Polybutene-1 was synthesized stereoselectively with the precursor η(5)-(pentamethyl-cyclopentadienyl) tribenzyloxide titanium (Cp*Ti(OBz)3) and methylaluminoxane (MAO). The effects of polymerization conditions, trimethyl alumina (TMA) content in MAO and temperature on the crystalline and molecular weight of the products, and catalytic activity were investigated. The structural properties of the polybutene-1 were characterized with (13)C NMR and WAXD.
文摘The selective hydrogenolysis of glycerol to 1,3-propanediol(1,3-PDO)is an attractive reaction due to the high demand for valorization of huge excess amounts of glycerol supply as well as the important application of 1,3-PDO in polyester industry.Nevertheless,the formation of 1,3-PDO is thermodynamically less favorable than 1,2-PDO,which necessitates the development of efficient catalysts to manipulate the reaction kinetics towards the 1,3-PDO formation.Among others,Pt-W based catalysts have shown promising activities and selectivities of 1,3-PDO although the reaction mechanism is not well addressed at the molecular level.In this short review,we have compared the performances of different Pt-W based catalysts and discussed the key factors influencing the activity and selectivity.Three possible reaction mechanisms have been discussed in terms of the synergy between Pt and WO_x and the origin of acid sites.Finally,the long-term stability of the Pt-W catalysts has been discussed.We hope this review will provide useful information for the development of more efficient catalysts for this important reaction.
基金Supported by the National Basic Research Program of China (2009CB623406), the National Natural Science Foundation of China (20806038), the Natural Science Foundation of Jiangsu Province (BK2008504), the National Science Foundation for Postdoctoral Scientists of China (20070421005) and Jiangsu Planned Projects for Postdoctoral Research Funds (0702020B).
文摘Ceramic ultrafiltration membranes were used to separate titanium silicalite-1 (TS-1) catalysts from the slurry of catalytic ammoximation of cyclohexanone to oxime. Silica was shown to have a great effect on membrane fouling in the alkaline environment of this system. In the ammoximation system, there are three main silica sources, which are residual silica on the catalyst particles surface during preparation, silica dissolved from TS-1 catalyst particles by ammonia solvent, and silica sol added into the reaction slurry to inhibit the dissolution erosion of the TS-1 catalyst. The silica dissolved by ammonia has been proved to influence membrane fouling most among the three silica sources. This was because the amount of silica dissolved by ammonia was the largest, and the polymerization of silica monomers at high concentration caused colloid particles formation, which led to a dense cake layer depositing on the membrane surface. Meanwhile, the size reduction of catalyst particles caused by alkaline dissolution also increased specific resistances of cake layers.
文摘A new solid acid catalyst,SO4^2-/TiO2 modified with tin,was prepared using a sol-gel method and its physicochemical properties were revealed by nitrogen adsorption-desorption,X-ray powder diffraction,scanning electron microscopy,Fourier transform infrared spectroscopy,infrared spectroscopy of adsorbed pyridine,temperature-programmed desorption of ammonia and thermal gravimetric analysis.The structure,acidity and thermal stability of the SO4^2-/TiO2-SnO2 catalyst were studied.Incorporating tin enlarged the specific surface area and decreased crystallite size of the SO4^2-/TiO2 catalyst.The total acid sites of the modified catalyst increased and Bronsted acid strength remarkably increased with increasing tin content.The decomposition temperature of sulfate radical in the modified catalyst was 100 ℃ greater and its mass loss was more than twice that of the SO4^2-/TiO2 catalyst.The SO4^2-/TiO2-SnO2 catalyst was designed to synthesize 1,6-hexanediol diacrylate by esterification of 1,6-hexanediol with crylic acid.The yield of 1,6-hexanediol diacrylate exceeded 87% under the optimal reaction conditions:crylic acid to 1,6-hexanediol molar ratio = 3.5,catalyst loading = 7%,reaction temperature = 130 ℃ and reaction time = 3 h.The modified catalyst exhibited excellent reusability and after 10 cycles the conversion of 1,6-hexanediol was above 81%.
基金supported by the National Natural Science Foundation of China (No. 21006109)the Postdoctoral Science Foundation of China (No. 20080430581)the CASKC Wang Post-Doctoral Fellowship
文摘The intrinsic kinetics of oxidative dehydrogenation of propane with CO2 has been investigated over Cr/MSU-1 catalyst in a fixed bed reactor. Without limitations of both internal and external diffusion, intrinsic kinetic data were obtained under the following conditions: 490-530 °C, space velocity of 3600?6000 mL·h-1·g-1 and 3/1 molar ratio for CO2/C3H8 under normal pressure. Based on Langmuir-Hinshelwood mechanism, the kinetic models were established, and they were validated by statistical analysis. The parameters were estimated using Simplex Method combined with Universal Global Optimization Algorithm. The model, taking the surface reaction process as the rate-determining step, is the best one in agreement with the experimental data.
基金Supported by the National Natural Science Foundation of China(21676238)
文摘Although the preparation of ZSM-5@silicalite-1(ZS) core–shell catalysts has been reported in the literature,their selectivity to para-xylene(PX)in the toluene alkylation with methanol is difficult to control.Here we present the effects of water and ZSM-5 adding amounts in the synthesis solution,the hydrothermal synthesis time,and the Si/Al ratio of core ZSM-5 on the catalytic performance of ZS core–shell catalysts.The ZS core–shell catalysts were characterized by X-ray diffraction (XRD),N_2 adsorption,and NH_3 temperature-programmed desorption (NH_3-TPD) techniques.The highest PX selectivity of 95.5%was obtained for the ZS(Si/Al=140) catalyst prepared in the synthesis solution with a molar ratio of 0.2 TPAOH:1TEOS:250H_2O at 175°C and 10 r·min^(-1) for only 2 h and the corresponding toluene conversion is as high as 22.8% for the alkylation of toluene with methanol.
基金This work was supported by Guangdong Natural Science Foundation of China (030514)Science and Technology Programs of Guangdong Province of China (2004B33401006)
文摘The transition metals (Cu, Co, and Fe) were applied to modify Ni/Ce0.2Zr0.1Al0.7Oδ catalyst. The effects of transition metals on the catalytic properties of Ni/Ce0.2Zr0.1Al0.7Oδ autothermal reforming of methane were investigated. The Ni-supported catalysts were characterized by XRD, TPR and XPS. Tests in autothermal reforming of methane to hydrogen showed that the addition of transition metals (Cu and Co) significantly increased the activity of catalyst under the conditions of lower reaction temperature, and Ni/Cu0.05Ce0.2Zr0.1Al0.65Oδ was found to have the highest conversion of CH4 among all catalysts in the operation temperatures ranging from 923 K to 1023 K. TPR, XRD and XPS measurements indicated that the cubic phases of CexZr1-xO2 solid solution were formed in the preparation process of catalysts. Strong interaction was found to exist between NiO and CexZr1-xO2 solid solution. The addition of Cu improved the dispersion of NiO, inhibited the formation of NiAl2O4, and thus significantly promoted the activity of the catalyst Ni/Cu0.05Ce0.2Zr0.1Al0.65Oδ
文摘The Co-incorporated Ce1-xZrxO2 catalysts were prepared by co-precipitation for carbon dioxide reforming of methane.The ratio of Ce to Zr was varied to optimize the performances of co-precipitated Co-Ce-Zr-Ox catalysts.The prepared catalysts were characterized by various physico-chemical characterization techniques including TPR,X-ray diffraction,N2 adsorption at low temperature,XPS and CO2-TPSR.The co-precipitated Co-Ce0.8Zr0.2O2 sample containing 16% CoO exhibited a higher catalytic activity among the five catalysts,and the activity was maintained without significant loss during the reaction for 60 h.Under the conditions of 750 ℃,0.1 MPa,36000 ml/(h gcat),and CO2/CH4 molar ratio of 1:1,the CO2 conversion over this catalyst was 75% while the CH4 conversion was 67%.The cubic Ce0.8Zr0.2O2 facilitated a higher dispersion and a higher reducibility of the cobalt component,and the apparent activation energy for Co-Ce0.8Zr0.2O2 sample was 49.1 kJ/mol in the CO2/CH4 reforming reaction.As a result,the Co-Ce0.8Zr0.2O2 sample exhibited a higher activity and stability for the reforming of CH4 with CO2.
文摘The polymerization of 1-octene with Nd(P_(204))_3-AlEt_3 catalyst has been successfully carried out for the first time.Some features of polymerization of 1-octene are described.The 1-octene oligomer prepared has an average molecular weight of about 10~3 with molecular weight distribution of about 2.It has a terminal double bond,which can be transferred into terminal carboxy group by direct oxidation with KMnO_4 in acidic solution, and then can be esterified with polyglycol.
基金This work was supported by the National Natural Science Foundation of China (grant No. 20174034, 20274037).
文摘A series of Ti/Mg supported catalysts are prepared by using ball-milled mixtures of MgCl2-ethanol adducts and NaCl as supports, and 1-hexene polymerizations catalyzed by the novel catalysts are studied. It is found that the molecular weight distribution of poly(1-hexene) becomes apparently narrower when catalysts with doped supports are used, indicating that changing the structure of the support is an effective way to regulate the active center distribution of heterogeneous Ziegler-Natta catalyst.
基金financial support from the Key Projects of Natural Science Foundation of Liaoning Province(2018010047-301)the Shenyang National Laboratory for Materials Science for his research(Y8L6641161)+1 种基金financial support from the National Key R&D Program of China(2016YFB0501303)funding from European Union's Horizon 2020 research and innovation programme under grant agreement No.872102。
文摘Silicalite-1(S1)foam was functionalized by supporting manganese-cobalt(Mn-Co)mixed oxides to develop the structured hierarchical catalyst(Mn-Co@SlF)for catalytic combustion for the first time.The self-supporting S1 foam with hierarchical porosity was prepared via hydrothermal synthesis with polyurethane(PU)foam as the template.Subsequently,Mn-Co oxide nano sheets were uniformly grown on the surface of S1 foams under hydrothermal conditions to prepare the structured hierarchical catalyst with specific surface area of 354 m^2·g^-1,micropore volume of 0.141 cm^3·g^-1 and total pore volume of 0.217 cm3·g^-1,as well as a good capacity to adsorb toluene(1.7 mmol·g^-1 at p/p0=0.99).Comparative catalytic combustion of toluene of over developed structured catalyst Mn-Co@SlF was performed against the control catalysts of bulk Mn-Co@S1(i.e.,the crushed Mn-Co@SlF)and unsupported Mn-Co oxides(i.e.,Mn-Co).Mn-Co@SlF exhibited comparatively the best catalytic performance,that is,complete and stable toluene conversion at 2480 C over 65 h due to the synergy between Mn-Co oxides and S1 foam,which provided a large number of oxygen vacancies,high redox capacity.In addition,the hierarchical porous structure also improved the accessibility of active sites and facilitated the global mass transfer across the catalyst bed,being beneficial to the catalysis and catalyst longevity.
基金Project supported by the Global R&D Program of the Korea Foundation for International Cooperation of Science and Technology (KICOS)
文摘C1 chemistry based on synthesis gas, methane, and carbon dioxide offers many routes to industrial chemicals. The reactions related to the synthesis of gas can be classified into direct and indirect approach for making such products, such as acetic acid, dimethyl ether, and alcohol. Catalytic syngas processing is currently done at high temperatures and pressures, conditions that could be unfavorable for the life of the catalyst. Another issue of C1 chemistry is related to the methane-initiated process. It has been known that direct methane conversions are still suffering from low yields and selectivity of products resulting in unprofitable ways to produce products, such as higher hydrocarbons, methanol, and so on. However, many experts and researchers are still trying to find the best method to overcome these barriers, for example, by finding the best catalyst to reduce the high-energy barrier of the reactions and conduct only selective catalyst-surface reactions. The appli- cation of Yttria-Stabilized Zirconia (YSZ) and its combination with other metals for catalyzing purposes are increasing. The existence of an interesting site that acts as oxygen store could be the main reason for it. Moreover, formation of intermediate species on the surface of YSZ also contributes significantly in increasing the production of some specific products. Understanding the phenomena happening inside could be necessary. In this article, the use of YSZ for some C1 chemistry reactions was discussed and reviewed.
基金the SINOPEC Corporation for the financial support
文摘1-Decene was oligomerized over the supported AlCl3/γ-Al2O3 catalyst in a fixed-bed reactor. The effects of temperature and LHSV on oligomerization of 1-decene were investigated and the synthetic PAO was characterized with GC technique. Furthermore, the life of immobilized catalyst was tested and the mechanism of catalyst deactivation was discussed. The results showed that with an increasing temperature, the PAO yield increased and the kinematic viscosity of oil decreased. The GC results indicated that the synthesized PAO was a mixture consisting of dimers, trimers, tetramers and pentamers. The results of chloride content measurements and BET tests showed that catalyst deactivation could be mainly attributed to the loss of active components.
基金supported by the National Natural Science Foundation of China(21872155,21473224)Cooperation Foundation of Dalian National Laboratory for Clean Energy(DNL 180303)+2 种基金Key Research Project of Frontier Science of Chinese Academy of Sciences(QYZDJ-SSW-SLH051)the Youth Innovation Promotion Association,CAS(2016371)the Suzhou Science and Technology Development Plan(SYG201626)~~
文摘A highly efficient and green process was developed for the synthesis of useful 5-amino-1-pentanol(5-AP)from biomass-derived dihydropyran by coupling the in situ generation of 5-hydroxypentanal(5-HP,via the ring-opening tautomerization of 2-hydroxytetrahydropyran(2-HTHP))and its reductive amination over supported Ni catalysts.The catalytic performances of the supported Ni catalysts on different oxides including SiO2,TiO2,ZrO2,γ-Al2 O3,and MgO as well as several commercial hydrogenation catalysts were investigated.The Ni/ZrO2 catalyst presented the highest 5-AP yield.The characterization results of the oxide-supported Ni catalysts showed that the Ni/ZrO2 catalyst possessed high reducibility and a high surface acid density,which lead to the enhanced activity and selectivity of the catalyst.The effect of reaction parameters on the catalytic performance of the Ni/ZrO2 catalyst was studied,and a high 5-AP yield of 90.8%was achieved in the reductive amination of 2-HTHP aqueous solution under mild conditions of 80℃and 2 MPa H2.The stability of the Ni/ZrO2 catalyst was studied using a continuous flow reactor,and only a slight decrease in the 5-AP yield was observed after a 90-h time-on-stream.Additionally,the reaction pathways for the reductive amination of 2-HTHP to synthesize 5-AP were proposed.
文摘A mechanochemical redox reaction between KMnO4 and CoCl2 was developed to obtain a CoxMn1-xOy catalyst with a specific surface area of 479 m^2 g^-1,which was higher than that obtained using a co-precipitation(CP)method(34 m2 g^-1),sol-gel(SG)method(72 m^2 g^-1),or solution redox process(131 m^2 g^-1).During catalytic combustion,this CoxMn1-xOy catalyst exhibited better activity(T100 for propylene=~200℃)than the control catalysts obtained using the SG(325℃)or CP(450℃)methods.The mechanical action,mainly in the form of kinetic energy and frictional heating,may generate a high degree of interstitial porosity,while the redox reaction could contribute to good dispersion of cobalt and manganese species.Moreover,the as-prepared CoxMn1-xOy catalyst worked well in the presence of water vapor(H2O 4.2%,>60 h)or SO2(100 ppm)and at high temperature(400℃,>60 h).The structure MnO2·(CoOOH)2.93 was suggested for the current CoxMn1-xOy catalyst.This catalyst could be extended to the total oxidation of other typical hydrocarbons(T90=150°C for ethanol,T90=225°C for acetone,T90=250℃for toluene,T90=120℃for CO,and T90=540℃for CH4).Scale-up of the synthesis of CoxMn1-xOy catalyst(1 kg)can be achieved via ball milling,which may provide a potential strategy for real world catalysis.
基金Supported by the Natural Science Foundation of Guangdong Province(No.0 314 2 0 ),the Guangzhou City Science andTechnology Project(No.2 0 0 3Z3- D2 0 71) and the Science and Technology Project of Guangdong Province(No.2 0 0 3C335 0 5
文摘A series of LaAl 1-xFe xO 3 catalysts prepared with lanthanum nitrate, aluminium nitrate and iron nitrate was investigated in catalytical syntheses of carbon nanotubes with high yields and purity. The properties of carbon nanotubes prepared by the method of CVD(chemical vapor deposition) with n-hexane as the carbon resource were studied and it was shown that the diameter of carbon nanotubes can be controlled by the molar ratio of iron to aluminum in the catalysts and that the diameter of carbon nanotubes changes a little with the decrease of the iron content in the catalysts. From the TEM pictures of carbon nanotubes, it can be found that the LaAl 1-xFe xO 3 catalysts have a significant influence on the wall thickness of the carbon nanotubes, whereas they have little influence on the inner diameter of the carbon nanotubes.
文摘Ce x Ti 1- x O 2 mixed oxides of different mole ratios ( x =0, 0.1, 0.2~0.9, 1.0) were prepared by co precipitation of TiCl 4 with Ce(NO 3) 3 and then loaded with different amounts of CuO. The effects of CuO on NO+CO reaction were investigated, and the structure and reductive properties of various CuO/Ce x Ti 1- x O 2 were characterized by the methodologies of BET, TPR and XRD. The results show that different Ce/Ti mole ratios and calcination temperatures induce changes of structure and reductive properties of the Ce x Ti 1- x O 2 mixed oxides. When x =0.1~0.5, amorphous CeTi 2O 6 phase mainly forms at 650 ℃ compared to the formation of CeTi 2O 6 which crystallizes at 800 ℃. When x >0.6, some TiO 2 enters the CeO 2 lattice and a CeO 2 TiO 2 solid solution is formed. The activity of 6%CuO/Ce x Ti 1- x O 2 calcined at 650 ℃ is largely affected by the x values, which is the highest when x =0.3, 0.4 and 0.9. The NO conversion reaches 70% at a reaction temperature of 150 ℃. By comparison, the x values have little effect on the activity of 6%CuO/Ce x Ti 1- x O 2 calcined at 800 ℃ . There are strong interactions between CuO and CeTi 2O 6, i.e., formation of the CeTi 2O 6 phase shifts the CuO reduction peak temperature from 380 to 200 ℃, and CuO, in turn, shifts the CeTi 2O 6 reduction peak temperature from 600 to 300 ℃.