Palladium-supported cobalt hydroxide(Co(OH)_(2)-Pd) nanoplates were fabricated in an aqueous solution and employed as a catalyst for the reduction of 4-nitrophenol.For the preparation of Co(OH)2-Pd,Pd nanoparticles we...Palladium-supported cobalt hydroxide(Co(OH)_(2)-Pd) nanoplates were fabricated in an aqueous solution and employed as a catalyst for the reduction of 4-nitrophenol.For the preparation of Co(OH)2-Pd,Pd nanoparticles were anchored on the Co(OH)_(2) nanoplates after the reduction of Na;PdCl;by ascorbic acid in the absence of a stabilizer at room temperature.The observations under transmission and scanning electron microscopy reveal that Pd nanoparticles with a size of 2-5 nm are uniformly dispersed on the surface of the Co(OH)_(2) nanoplates.In catalytic test,the conversion of 4-nitrophenol to 4-aminophenol is completed within 6 min in the presence of Co(OH)_(2)-Pd(1000) nanoplates with2.18 at.% Pd,and the corresponding kinetic constant is 0.0089 s;in the first test.The catalyst retains relatively high activity after several cycles.The results demonstrate that the Co(OH)_(2)-Pd(1000) nanoplates exhibit high catalytic activity toward the reduction of 4-nitrophenol in the presence of NaBH;.展开更多
ZrO2/TiO2 composite photocatalytic film was produced on the pure titanium substrate using in-situ Zr(OH)4 colloidal particle by the micro-arc oxidation technique and characterized by scanning electron microscope (...ZrO2/TiO2 composite photocatalytic film was produced on the pure titanium substrate using in-situ Zr(OH)4 colloidal particle by the micro-arc oxidation technique and characterized by scanning electron microscope (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD) and ultraviolet-visible (UV-Vis) spectrophotometer. The composite film shows a lamellar and porous structure which consists of anatase, futile and ZrO2 phases. The optical absorption edge of film is shifted to longer wavelength when ZrO2 is introduced to TiO2. Furthermore, the photocatalytic reaction rate constants of degradation of rhodamine B solution with ZrO2/TiO2 composite film and pure TiO2 film under ultraviolet irradiation are measured as 0.0442 and 0.0186 h 1, respectively.展开更多
基金the financial supports from the National Natural Science Foundation of China (Nos. 51974116, 51874128)the Science Foundation of Hunan Province, China (Nos. 2020JJ4273, 2020JJ5130)。
文摘Palladium-supported cobalt hydroxide(Co(OH)_(2)-Pd) nanoplates were fabricated in an aqueous solution and employed as a catalyst for the reduction of 4-nitrophenol.For the preparation of Co(OH)2-Pd,Pd nanoparticles were anchored on the Co(OH)_(2) nanoplates after the reduction of Na;PdCl;by ascorbic acid in the absence of a stabilizer at room temperature.The observations under transmission and scanning electron microscopy reveal that Pd nanoparticles with a size of 2-5 nm are uniformly dispersed on the surface of the Co(OH)_(2) nanoplates.In catalytic test,the conversion of 4-nitrophenol to 4-aminophenol is completed within 6 min in the presence of Co(OH)_(2)-Pd(1000) nanoplates with2.18 at.% Pd,and the corresponding kinetic constant is 0.0089 s;in the first test.The catalyst retains relatively high activity after several cycles.The results demonstrate that the Co(OH)_(2)-Pd(1000) nanoplates exhibit high catalytic activity toward the reduction of 4-nitrophenol in the presence of NaBH;.
基金Project(gf200901002)supported by the Open Research Fund of National Defense Key Disciplines Laboratory of Light Alloy Processing Science and Technology of Nanchang Hangkong University,China
文摘ZrO2/TiO2 composite photocatalytic film was produced on the pure titanium substrate using in-situ Zr(OH)4 colloidal particle by the micro-arc oxidation technique and characterized by scanning electron microscope (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD) and ultraviolet-visible (UV-Vis) spectrophotometer. The composite film shows a lamellar and porous structure which consists of anatase, futile and ZrO2 phases. The optical absorption edge of film is shifted to longer wavelength when ZrO2 is introduced to TiO2. Furthermore, the photocatalytic reaction rate constants of degradation of rhodamine B solution with ZrO2/TiO2 composite film and pure TiO2 film under ultraviolet irradiation are measured as 0.0442 and 0.0186 h 1, respectively.