The binary mixture of Yb2O3-La2O3 was used as an additive to improve the traditional electroless plating for Pd-Ag co-deposition on the inside surface of a porous ceramic tube. The main attention were paid to investig...The binary mixture of Yb2O3-La2O3 was used as an additive to improve the traditional electroless plating for Pd-Ag co-deposition on the inside surface of a porous ceramic tube. The main attention were paid to investigating the effects of Yb2O3-La2O3 on Pd-Ag co-deposition rate, plating temperature, Ag content in film and Pd/Ag reduction potentials. The experimental results show that the co-deposition rate is increased by 63 % , the plating temperature is decreased by 10 ~ 20℃for obtaining the same co-deposition rate and the Ag content in film basically remains unchangeable when Yb2O3-La2O3 is added into the traditional electroless plating solution. The experiment also shows that Pd/Ag reduction potentials basically remain unchangeable with the binary rare earths based on the electrochemical mathematical models An inorganic composite membrane with alloy film of 76.8(mol)% Pd-23.2(mol) % Ag and the thickness of 7.7μm on the porous ceramic tube was prepared and the permeation fluxes of hydrogen and nitrogen through the membrane are 8.65×10-3 and 1.92×10-6m3·m-2·s-1 at 350℃and 0.3 MPa respectively.展开更多
基金Project supported by Science and Technology Committee of Jiangxi Province
文摘The binary mixture of Yb2O3-La2O3 was used as an additive to improve the traditional electroless plating for Pd-Ag co-deposition on the inside surface of a porous ceramic tube. The main attention were paid to investigating the effects of Yb2O3-La2O3 on Pd-Ag co-deposition rate, plating temperature, Ag content in film and Pd/Ag reduction potentials. The experimental results show that the co-deposition rate is increased by 63 % , the plating temperature is decreased by 10 ~ 20℃for obtaining the same co-deposition rate and the Ag content in film basically remains unchangeable when Yb2O3-La2O3 is added into the traditional electroless plating solution. The experiment also shows that Pd/Ag reduction potentials basically remain unchangeable with the binary rare earths based on the electrochemical mathematical models An inorganic composite membrane with alloy film of 76.8(mol)% Pd-23.2(mol) % Ag and the thickness of 7.7μm on the porous ceramic tube was prepared and the permeation fluxes of hydrogen and nitrogen through the membrane are 8.65×10-3 and 1.92×10-6m3·m-2·s-1 at 350℃and 0.3 MPa respectively.