采用无电镀Pd的方法,在硅纳米线上制备了一层Pd.首次制备出了能够在室温下工作的Pd/SiNWs肖特基氢气传感器.SEM(Scanning Electron Microscopy)(扫描电子显微镜)表征结果表明,硅纳米线表面Pd层是由Pd纳米颗粒组成.Pd/SiNWs肖特基二极管...采用无电镀Pd的方法,在硅纳米线上制备了一层Pd.首次制备出了能够在室温下工作的Pd/SiNWs肖特基氢气传感器.SEM(Scanning Electron Microscopy)(扫描电子显微镜)表征结果表明,硅纳米线表面Pd层是由Pd纳米颗粒组成.Pd/SiNWs肖特基二极管I-V测试结果表明,该传感器可以在室温下进行氢气(H2)浓度的检测,且可检测的浓度范围很大,同时给出了Pd/SiNWs/p-Si肖特基二极管在常温下进行检测H_2的敏感机理.实验表明,这种新型传感器可以在室温下进行H2检测,且具有很大的发展潜力,可以应用于燃料电池等诸多领域.展开更多
A novel carbon matrix/silicon nanowires(SiNWs) heterogeneous block was successfully produced by dispersing SiNWs into templated carbon matrix via a modified evaporation induced self-assembly method. The heterogeneous ...A novel carbon matrix/silicon nanowires(SiNWs) heterogeneous block was successfully produced by dispersing SiNWs into templated carbon matrix via a modified evaporation induced self-assembly method. The heterogeneous block was determined by X-ray diffraction, Raman spectra and scanning electron microscopy. As an anode material for lithium batteries, the block was investigated by cyclic voltammograms(CV), charge/discharge tests, galvanostatic cycling performance and A. C. impedance spectroscopy. We show that the SiNWs disperse into the framework, and are nicely wrapped by the carbon matrix. The heterogeneous block exhibits superior electrochemical reversibility with a high specific capacity of 529.3 mAh/g in comparison with bare SiNWs anode with merely about 52.6 mAh/g capacity retention. The block presents excellent cycle stability and capacity retention which can be attributed to the improvement of conductivity by the existence of carbon matrix and the enhancement of ability to relieve the large volume expansion of SiNWs during the lithium insertion/extraction cycle. The results indicate that the as-prepared carbon matrix/SiNWs heterogeneous block can be an attractive and potential anode material for lithium-ion battery applications.展开更多
文摘采用无电镀Pd的方法,在硅纳米线上制备了一层Pd.首次制备出了能够在室温下工作的Pd/SiNWs肖特基氢气传感器.SEM(Scanning Electron Microscopy)(扫描电子显微镜)表征结果表明,硅纳米线表面Pd层是由Pd纳米颗粒组成.Pd/SiNWs肖特基二极管I-V测试结果表明,该传感器可以在室温下进行氢气(H2)浓度的检测,且可检测的浓度范围很大,同时给出了Pd/SiNWs/p-Si肖特基二极管在常温下进行检测H_2的敏感机理.实验表明,这种新型传感器可以在室温下进行H2检测,且具有很大的发展潜力,可以应用于燃料电池等诸多领域.
基金supported by the grants from the National Natural Science Foundation of China(Nos.51002129,51172191 and 11074211)the National Basic Research Program of China(2012CB921303)+2 种基金the Doctoral Program of Higher Education(No.200805300003)the Hunan Provincial InnovationFoundation for Graduate(No.CX2012B265)the Open Fund Based on Innovation Platform of Hunan Colleges and Universities(No.13K045)
文摘A novel carbon matrix/silicon nanowires(SiNWs) heterogeneous block was successfully produced by dispersing SiNWs into templated carbon matrix via a modified evaporation induced self-assembly method. The heterogeneous block was determined by X-ray diffraction, Raman spectra and scanning electron microscopy. As an anode material for lithium batteries, the block was investigated by cyclic voltammograms(CV), charge/discharge tests, galvanostatic cycling performance and A. C. impedance spectroscopy. We show that the SiNWs disperse into the framework, and are nicely wrapped by the carbon matrix. The heterogeneous block exhibits superior electrochemical reversibility with a high specific capacity of 529.3 mAh/g in comparison with bare SiNWs anode with merely about 52.6 mAh/g capacity retention. The block presents excellent cycle stability and capacity retention which can be attributed to the improvement of conductivity by the existence of carbon matrix and the enhancement of ability to relieve the large volume expansion of SiNWs during the lithium insertion/extraction cycle. The results indicate that the as-prepared carbon matrix/SiNWs heterogeneous block can be an attractive and potential anode material for lithium-ion battery applications.