RuO_(2) has been considered a potential alternative to commercial IrO_(2) for the oxygen evolution reaction(OER)due to its superior intrinsic activity.However,its inherent structure dissolution in acidic environments ...RuO_(2) has been considered a potential alternative to commercial IrO_(2) for the oxygen evolution reaction(OER)due to its superior intrinsic activity.However,its inherent structure dissolution in acidic environments restricts its commercial applications.In this study,we report a novel Pd-doped ruthenium oxide(Pd–RuO_(2))nanosheet catalyst that exhibits improved activity and stability through a synergistic effect of Pd modulation of Ru electronic structure and the two-dimensional structure.The catalyst exhibits excellent performance,achieving an overpotential of only 204 mVat a current density of 10 mA cm^(-2).Impressively,after undergoing 8000 cycles of cyclic voltammetry testing,the overpotential merely decreased by 5 mV.The PEM electrolyzer with Pd0.08Ru0.92O_(2) as an anode catalyst survived an almost 130 h operation at 200 mA cm^(-2).To elucidate the underlying mechanisms responsible for the enhanced stability,we conducted an X-ray photoelectron spectroscopy(XPS)analysis,which reveals that the electron transfer from Pd to Ru effectively circumvents the over-oxidation of Ru,thus playing a crucial role in enhancing the catalyst's stability.Furthermore,density functional theory(DFT)calculations provide compelling evidence that the introduction of Pd into RuO_(2) effectively modulates electron correlations and facilitates the electron transfer from Pd to Ru,thereby preventing the overoxidation of Ru.Additionally,the application of the two-dimensional structure effectively inhibited the aggregation and growth of nanoparticles,further bolstering the structural integrity of the catalyst.展开更多
SnO2 nano particles with various Pd-doping concentrations were prepared using a template-free hydrothermal method.The effects of Pd doping on the crystal structure,morphology,microstructure,thermal stability and surfa...SnO2 nano particles with various Pd-doping concentrations were prepared using a template-free hydrothermal method.The effects of Pd doping on the crystal structure,morphology,microstructure,thermal stability and surface chemistry of these nano particles were characterized by transmission electron microscope,X-ray diffractometer and X-ray photoelectron spectroscope respectively.It was observed that Pd-doping had little effect on the grain sizes of the obtained SnO2 nano particles during the hydrothermal route.During thermal annealing,Pd-doping could restrain the growth of grain sizes below 500℃ while the grain growth was promoted when the temperature increased to above 700℃.XPS results revealed that Pd existed in three chemical states in the as-synthesized sample as Pd^0,Pd^2+ and Pd^4+,respectively.Pd^4+ was the main state which was responsible for improving the gas-sensing property.The optimal Pd-doping concentration for better gas-sensing property and thermal stability was 2.0%-2.5% (mole fraction).展开更多
基金supported by the National Natural Science Foundation of China(No.22209035)the Major Science and Technology Projects of Yunnan Province(No.202302AH360001)the Natural Science Foundation of Hebei Province(No.E2020202091).
文摘RuO_(2) has been considered a potential alternative to commercial IrO_(2) for the oxygen evolution reaction(OER)due to its superior intrinsic activity.However,its inherent structure dissolution in acidic environments restricts its commercial applications.In this study,we report a novel Pd-doped ruthenium oxide(Pd–RuO_(2))nanosheet catalyst that exhibits improved activity and stability through a synergistic effect of Pd modulation of Ru electronic structure and the two-dimensional structure.The catalyst exhibits excellent performance,achieving an overpotential of only 204 mVat a current density of 10 mA cm^(-2).Impressively,after undergoing 8000 cycles of cyclic voltammetry testing,the overpotential merely decreased by 5 mV.The PEM electrolyzer with Pd0.08Ru0.92O_(2) as an anode catalyst survived an almost 130 h operation at 200 mA cm^(-2).To elucidate the underlying mechanisms responsible for the enhanced stability,we conducted an X-ray photoelectron spectroscopy(XPS)analysis,which reveals that the electron transfer from Pd to Ru effectively circumvents the over-oxidation of Ru,thus playing a crucial role in enhancing the catalyst's stability.Furthermore,density functional theory(DFT)calculations provide compelling evidence that the introduction of Pd into RuO_(2) effectively modulates electron correlations and facilitates the electron transfer from Pd to Ru,thereby preventing the overoxidation of Ru.Additionally,the application of the two-dimensional structure effectively inhibited the aggregation and growth of nanoparticles,further bolstering the structural integrity of the catalyst.
基金Projects(60806032,20975107) supported by the National Natural Science Foundation of ChinaProject(2009R10064) supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars of Education Ministry,China+2 种基金 Project(2009R10064) supported by "Qianjiang Talent Program"Projects(2009A610058,2009A610030) supported by the Ningbo Natural Science Foundation,ChinaProject supported by K.C.WONG Magna Fund in Ningbo University,China
文摘SnO2 nano particles with various Pd-doping concentrations were prepared using a template-free hydrothermal method.The effects of Pd doping on the crystal structure,morphology,microstructure,thermal stability and surface chemistry of these nano particles were characterized by transmission electron microscope,X-ray diffractometer and X-ray photoelectron spectroscope respectively.It was observed that Pd-doping had little effect on the grain sizes of the obtained SnO2 nano particles during the hydrothermal route.During thermal annealing,Pd-doping could restrain the growth of grain sizes below 500℃ while the grain growth was promoted when the temperature increased to above 700℃.XPS results revealed that Pd existed in three chemical states in the as-synthesized sample as Pd^0,Pd^2+ and Pd^4+,respectively.Pd^4+ was the main state which was responsible for improving the gas-sensing property.The optimal Pd-doping concentration for better gas-sensing property and thermal stability was 2.0%-2.5% (mole fraction).