With the improvement of equipment reliability,human factors have become the most uncertain part in the system.The standardized Plant Analysis of Risk-Human Reliability Analysis(SPAR-H)method is a reliable method in th...With the improvement of equipment reliability,human factors have become the most uncertain part in the system.The standardized Plant Analysis of Risk-Human Reliability Analysis(SPAR-H)method is a reliable method in the field of human reliability analysis(HRA)to evaluate human reliability and assess risk in large complex systems.However,the classical SPAR-H method does not consider the dependencies among performance shaping factors(PSFs),whichmay cause overestimation or underestimation of the risk of the actual situation.To address this issue,this paper proposes a new method to deal with the dependencies among PSFs in SPAR-H based on the Pearson correlation coefficient.First,the dependence between every two PSFs is measured by the Pearson correlation coefficient.Second,the weights of the PSFs are obtained by considering the total dependence degree.Finally,PSFs’multipliers are modified based on the weights of corresponding PSFs,and then used in the calculating of human error probability(HEP).A case study is used to illustrate the procedure and effectiveness of the proposed method.展开更多
传统Pearson相关系数计算公式具有不稳健性,离群值的存在会导致计算结果与实际不符。针对此问题,文章给出了一种稳健估计方法。在模拟样本量分别为20、50、100、200,污染率分别为1%、5%、10%情形下,比较传统相关系数值与稳健相关系数值...传统Pearson相关系数计算公式具有不稳健性,离群值的存在会导致计算结果与实际不符。针对此问题,文章给出了一种稳健估计方法。在模拟样本量分别为20、50、100、200,污染率分别为1%、5%、10%情形下,比较传统相关系数值与稳健相关系数值,发现:稳健相关系数公式正确率均显著高于传统相关系数。在实例分析中进一步验证了稳健相关系数的可行性和有效性。文章研究结论可用于含离群值变量的相关系数稳健估计。The traditional Pearson correlation coefficient calculation formula is not robust, and the existence of outliers will cause the calculation results to be inconsistent with reality. To solve this problem, this paper presents a robust estimation method. When the simulated sample size is 20, 50, 100 and 200 respectively, the pollution rate is 1%, 5% and 10% respectively, it is found that the accuracy of the robust correlation coefficient formula is significantly higher than that of the traditional correlation coefficient. The feasibility and effectiveness of a robust correlation coefficient are further verified in the example analysis. The conclusions of this paper can be used for robust estimation of correlation coefficients with outlier variables.展开更多
Prediction of reservoir fracture is the key to explore fracture-type reservoir. When a shear-wave propagates in anisotropic media containing fracture,it splits into two polarized shear waves: fast shear wave and slow ...Prediction of reservoir fracture is the key to explore fracture-type reservoir. When a shear-wave propagates in anisotropic media containing fracture,it splits into two polarized shear waves: fast shear wave and slow shear wave. The polarization and time delay of the fast and slow shear wave can be used to predict the azimuth and density of fracture. The current identification method of fracture azimuth and fracture density is cross-correlation method. It is assumed that fast and slow shear waves were symmetrical wavelets after completely separating,and use the most similar characteristics of wavelets to identify fracture azimuth and density,but in the experiment the identification is poor in accuracy. Pearson correlation coefficient method is one of the methods for separating the fast wave and slow wave. This method is faster in calculating speed and better in noise immunity and resolution compared with the traditional cross-correlation method. Pearson correlation coefficient method is a non-linear problem,particle swarm optimization( PSO) is a good nonlinear global optimization method which converges fast and is easy to implement. In this study,PSO is combined with the Pearson correlation coefficient method to achieve identifying fracture property and improve the computational efficiency.展开更多
Many applications for control of autonomous platform are being developed and one important aspect is the excess of information, frequently redundant, that imposes a great computational cost in data processing. Taking ...Many applications for control of autonomous platform are being developed and one important aspect is the excess of information, frequently redundant, that imposes a great computational cost in data processing. Taking into account the temporal coherence between consecutive frames, the PCC (Pearson's Correlation Coefficient) was proposed and applied as: discarding criteria methodology, dynamic power management solution, environment observer method which selects automatically only the regions-of-interest; and taking place in the obstacle avoidance context, as a method for collision risk estimation for vehicles in dynamic and unknown environments. Even if the PCC is a great tool to help the autonomous or semi-autonomous navigation, distortions in the imaging system, pixel noise, slight variations in the object's position relative to the camera, and other factors produce a false PCC threshold. Whereas there are homogeneous regions in the image, in order to obtain a more realistic Pearson's correlation, we propose to use some prior known environment information.展开更多
Aim To study the reason of the insensitiveness of Pearson product-momentcorrelation coefficient as a similarity measure and the method to improve its sensitivity. MethodsExperimental and simulated data sets were used....Aim To study the reason of the insensitiveness of Pearson product-momentcorrelation coefficient as a similarity measure and the method to improve its sensitivity. MethodsExperimental and simulated data sets were used. Results The distribution range of the data setsinfluences the sensitivity of Pearson product-moment correlation coefficient. Weighted Pearsonproduct-moment correlation coefficient is more sensitive when the range of the data set is large.Conclusion Weighted Pearson product-moment correlation coefficient is necessary when the range ofthe data set is large.展开更多
This study investigates the impact of different water coupling coefficients on the blasting effect of red sandstone.The analysis is based on the theories of detonation wave and elastic wave,focusing on the variation i...This study investigates the impact of different water coupling coefficients on the blasting effect of red sandstone.The analysis is based on the theories of detonation wave and elastic wave,focusing on the variation in wall pressure of the blasting holes.Using DDNP explosive as the explosive load,blasting tests were conducted on red sandstone specimens with four different water coupling coefficients:1.20,1.33,1.50,and 2.00.The study examines the morphologies of the rock specimens after blasting under these different water coupling coefficients.Additionally,the fractal dimensions of the surface cracks resulting from the blasting were calculated to provide a quantitative evaluation of the extent of rock damage.CT scanning and 3D reconstruction were performed on the post-blasting specimens to visually depict the extent of damage and fractures within the rock.Additionally,the volume fractal dimension and damage degree of the post-blasting specimens are calculated.The findings are then combined with numerical simulation to facilitate auxiliary analysis.The results demonstrate that an increase in the water coupling coefficient leads to a reduction in the peak pressure on the hole wall and the crushing zone,enabling more of the explosion energy to be utilized for crack propagation following the explosion.The specimens exhibited distinct failure patterns,resulting in corresponding changes in fractal dimensions.The simulated pore wall pressure–time curve validated the derived theoretical results,whereas the stress cloud map and explosion energy-time curve demonstrated the buffering effect of the water medium.As the water coupling coefficient increases,the buffering effect of the water medium becomes increasingly prominent.展开更多
The use of metamaterial enhances the performance of a specific class of antennas known as metamaterial antennas.The radiation cost and quality factor of the antenna are influenced by the size of the antenna.Metamateri...The use of metamaterial enhances the performance of a specific class of antennas known as metamaterial antennas.The radiation cost and quality factor of the antenna are influenced by the size of the antenna.Metamaterial antennas allow for the circumvention of the bandwidth restriction for small antennas.Antenna parameters have recently been predicted using machine learning algorithms in existing literature.Machine learning can take the place of the manual process of experimenting to find the ideal simulated antenna parameters.The accuracy of the prediction will be primarily dependent on the model that is used.In this paper,a novel method for forecasting the bandwidth of the metamaterial antenna is proposed,based on using the Pearson Kernel as a standard kernel.Along with these new approaches,this paper suggests a unique hypersphere-based normalization to normalize the values of the dataset attributes and a dimensionality reduction method based on the Pearson kernel to reduce the dimension.A novel algorithm for optimizing the parameters of Convolutional Neural Network(CNN)based on improved Bat Algorithm-based Optimization with Pearson Mutation(BAO-PM)is also presented in this work.The prediction results of the proposed work are better when compared to the existing models in the literature.展开更多
Background: The signal-to-noise ratio (SNR) is recognized as an index of measurements reproducibility. We derive the maximum likelihood estimators of SNR and discuss confidence interval construction on the difference ...Background: The signal-to-noise ratio (SNR) is recognized as an index of measurements reproducibility. We derive the maximum likelihood estimators of SNR and discuss confidence interval construction on the difference between two correlated SNRs when the readings are from bivariate normal and bivariate lognormal distribution. We use the Pearsons system of curves to approximate the difference between the two estimates and use the bootstrap methods to validate the approximate distributions of the statistic of interest. Methods: The paper uses the delta method to find the first four central moments, and hence the skewness and kurtosis which are important in the determination of the parameters of the Pearsons distribution. Results: The approach is illustrated in two examples;one from veterinary microbiology and food safety data and the other on data from clinical medicine. We derived the four central moments of the target statistics, together with the bootstrap method to evaluate the parameters of Pearsons distribution. The fitted Pearsons curves of Types I and II were recommended based on the available data. The R-codes are also provided to be readily used by the readers.展开更多
Collisions between objects are a relatively common phenomenon in nature.Analyses of collision processes can greatly contribute to solving problems such as impact-rub faults and particle impacts.The coefficient of rest...Collisions between objects are a relatively common phenomenon in nature.Analyses of collision processes can greatly contribute to solving problems such as impact-rub faults and particle impacts.The coefficient of restitution is a critical parameter in the analysis of collision processes.Many experiments have shown that the coefficient of restitution is closely related to the plate thickness,and the smaller the plate thickness,the more inaccurate the coefficient of restitution predicted by the existing model,which seriously affects the process of collision analysis.To remedy this shortcoming,this paper proposes a plate thickness influence factor with the ratio of sphere diameter to plate thickness as the variable.The plate thickness influence factor can optimize the coefficient of restitution model to effectively predict the coefficient of restitution of impacting elastoplastic spheres with finite plate thickness.Finally,the validity of the new model is verified using a large amount of experimental data.展开更多
We study equations in divergence form with piecewise Cαcoefficients.The domains contain corners and the discontinuity surfaces are attached to the edges of the corners.We obtain piecewise C^(1,α) estimates across th...We study equations in divergence form with piecewise Cαcoefficients.The domains contain corners and the discontinuity surfaces are attached to the edges of the corners.We obtain piecewise C^(1,α) estimates across the discontinuity surfaces and provide an example to illustrate the issue regarding the regularity at the corners.展开更多
Underground energy and resource development,deep underground energy storage and other projects involve the global stability of multiple interconnected cavern groups under internal and external dynamic disturbances.An ...Underground energy and resource development,deep underground energy storage and other projects involve the global stability of multiple interconnected cavern groups under internal and external dynamic disturbances.An evaluation method of the global stability coefficient of underground caverns based on static overload and dynamic overload was proposed.Firstly,the global failure criterion for caverns was defined based on its band connection of plastic-strain between multi-caverns.Then,overloading calculation of the boundary geostress and seismic intensity on the caverns model was carried out,and the critical unstable state of multi-caverns can be identified,if the plastic-strain band appeared between caverns during these overloading processes.Thus,the global stability coefficient for the multi-caverns under static loading and earthquake was obtained based on the corresponding overloading coefficient.Practical analysis for the Yingliangbao(YLB)hydraulic caverns indicated that this method can not only effectively obtain the global stability coefficient of caverns under static and dynamic earthquake conditions,but also identify the caverns’high-risk zone of local instability through localized plastic strain of surrounding rock.This study can provide some reference for the layout design and seismic optimization of underground cavern group.展开更多
Many experiments have demonstrated that resonant magnetic perturbation(RMP) can affect the turbulent transport at the edge of the tokamak. Through the Experimental Advanced Superconducting Tokamak(EAST) density modula...Many experiments have demonstrated that resonant magnetic perturbation(RMP) can affect the turbulent transport at the edge of the tokamak. Through the Experimental Advanced Superconducting Tokamak(EAST) density modulation experiment, the particle transport coefficients were calculated using the experimental data, and the result shows that the particle transport coefficients increase with RMP. In this study, the six-field two-fluid model in BOUT++ is used to simulate the transport before and after density pump-out induced by RMP,respectively referred as the case without RMP and the case with RMP. In the linear simulations,the instabilities generally decreases for cases with RMP. In the nonlinear simulation, ELM only appears in the case without RMP. Additionally, the particle transport coefficient was analyzed,and the result shows that the particle transport coefficient becomes larger for the case with RMP,which is consistent with the experimental conclusion. Moreover, its magnitude is comparable to the results calculated from experimental data.展开更多
This work is a simulation modelling with the LAMMPS calculation code of an electrode based on alkali metals (lithium, sodium and potassium) using the MEAM potential. For different multiplicities, two models were studi...This work is a simulation modelling with the LAMMPS calculation code of an electrode based on alkali metals (lithium, sodium and potassium) using the MEAM potential. For different multiplicities, two models were studied;with and without gap. In this work, we present the structural, physical and chemical properties of the lithium, sodium and potassium electrodes. For the structural properties, the cohesive energy and the mesh parameters were calculated, revealing that, whatever the chemical element selected, the compact hexagonal hcp structure is the most stable, followed by the face-centred cubic CFC structure, and finally the BCC structure. The most stable structure is lithium, with a cohesion energy of -6570 eV, and the lowest bcc-hcp transition energy of -0.553 eV/atom, followed by sodium. For physical properties, kinetic and potential energies were calculated for each of the sectioned chemical elements, with lithium achieving the highest value. Finally, for the chemical properties, we studied the diffusion coefficient and the activation energy. Only potassium followed an opposite order to the other two, with the quantities with lacunae being greater than those without lacunae, whatever the multiplicity. The order of magnitude of the diffusion coefficients is given by the relationship D<sub>Li</sub> > D<sub>Na</sub> > D<sub>k</sub> for the multiplicity 6*6*6, while for the activation energy the order is reversed.展开更多
The particle residence time distribution(RTD)and axial dispersion coefficient are key parameters for the design and operation of a pressurized circulating fluidized bed(PCFB).In this study,the effects of pressure(0.1-...The particle residence time distribution(RTD)and axial dispersion coefficient are key parameters for the design and operation of a pressurized circulating fluidized bed(PCFB).In this study,the effects of pressure(0.1-0.6 MPa),fluidizing gas velocity(2-7 m·s^(-1)),and solid circulation rate(10-90 kg·m^(-2)·s^(-1))on particle RTD and axial dispersion coefficient in a PCFB are numerically investigated based on the multiphase particle-in-cell(MP-PIC)method.The details of the gas-solid flow behaviors of PCFB are revealed.Based on the gas-solid flow pattern,the particles tend to move more orderly under elevated pressures.With an increase in either fluidizing gas velocity or solid circulation rate,the mean residence time of particles decreases while the axial dispersion coefficient increases.With an increase in pressure,the core-annulus flow is strengthened,which leads to a wider shape of the particle RTD curve and a larger mean particle residence time.The back-mixing of particles increases with increasing pressure,resulting in an increase in the axial dispersion coefficient.展开更多
To support the explosive growth of Information and Communications Technology(ICT),Mobile Edge Comput-ing(MEC)provides users with low latency and high bandwidth service by offloading computational tasks to the network...To support the explosive growth of Information and Communications Technology(ICT),Mobile Edge Comput-ing(MEC)provides users with low latency and high bandwidth service by offloading computational tasks to the network’s edge.However,resource-constrained mobile devices still suffer from a capacity mismatch when faced with latency-sensitive and compute-intensive emerging applications.To address the difficulty of running computationally intensive applications on resource-constrained clients,a model of the computation offloading problem in a network consisting of multiple mobile users and edge cloud servers is studied in this paper.Then a user benefit function EoU(Experience of Users)is proposed jointly considering energy consumption and time delay.The EoU maximization problem is decomposed into two steps,i.e.,resource allocation and offloading decision.The offloading decision is usually given by heuristic algorithms which are often faced with the challenge of slow convergence and poor stability.Thus,a combined offloading algorithm,i.e.,a Gini coefficient-based adaptive genetic algorithm(GCAGA),is proposed to alleviate the dilemma.The proposed algorithm optimizes the offloading decision by maximizing EoU and accelerates the convergence with the Gini coefficient.The simulation compares the proposed algorithm with the genetic algorithm(GA)and adaptive genetic algorithm(AGA).Experiment results show that the Gini coefficient and the adaptive heuristic operators can accelerate the convergence speed,and the proposed algorithm performs better in terms of convergence while obtaining higher EoU.The simulation code of the proposed algorithm is available:https://github.com/Grox888/Mobile_Edge_Computing/tree/GCAGA.展开更多
基金Shanghai Rising-Star Program(Grant No.21QA1403400)Shanghai Sailing Program(Grant No.20YF1414800)Shanghai Key Laboratory of Power Station Automation Technology(Grant No.13DZ2273800).
文摘With the improvement of equipment reliability,human factors have become the most uncertain part in the system.The standardized Plant Analysis of Risk-Human Reliability Analysis(SPAR-H)method is a reliable method in the field of human reliability analysis(HRA)to evaluate human reliability and assess risk in large complex systems.However,the classical SPAR-H method does not consider the dependencies among performance shaping factors(PSFs),whichmay cause overestimation or underestimation of the risk of the actual situation.To address this issue,this paper proposes a new method to deal with the dependencies among PSFs in SPAR-H based on the Pearson correlation coefficient.First,the dependence between every two PSFs is measured by the Pearson correlation coefficient.Second,the weights of the PSFs are obtained by considering the total dependence degree.Finally,PSFs’multipliers are modified based on the weights of corresponding PSFs,and then used in the calculating of human error probability(HEP).A case study is used to illustrate the procedure and effectiveness of the proposed method.
文摘传统Pearson相关系数计算公式具有不稳健性,离群值的存在会导致计算结果与实际不符。针对此问题,文章给出了一种稳健估计方法。在模拟样本量分别为20、50、100、200,污染率分别为1%、5%、10%情形下,比较传统相关系数值与稳健相关系数值,发现:稳健相关系数公式正确率均显著高于传统相关系数。在实例分析中进一步验证了稳健相关系数的可行性和有效性。文章研究结论可用于含离群值变量的相关系数稳健估计。The traditional Pearson correlation coefficient calculation formula is not robust, and the existence of outliers will cause the calculation results to be inconsistent with reality. To solve this problem, this paper presents a robust estimation method. When the simulated sample size is 20, 50, 100 and 200 respectively, the pollution rate is 1%, 5% and 10% respectively, it is found that the accuracy of the robust correlation coefficient formula is significantly higher than that of the traditional correlation coefficient. The feasibility and effectiveness of a robust correlation coefficient are further verified in the example analysis. The conclusions of this paper can be used for robust estimation of correlation coefficients with outlier variables.
文摘Prediction of reservoir fracture is the key to explore fracture-type reservoir. When a shear-wave propagates in anisotropic media containing fracture,it splits into two polarized shear waves: fast shear wave and slow shear wave. The polarization and time delay of the fast and slow shear wave can be used to predict the azimuth and density of fracture. The current identification method of fracture azimuth and fracture density is cross-correlation method. It is assumed that fast and slow shear waves were symmetrical wavelets after completely separating,and use the most similar characteristics of wavelets to identify fracture azimuth and density,but in the experiment the identification is poor in accuracy. Pearson correlation coefficient method is one of the methods for separating the fast wave and slow wave. This method is faster in calculating speed and better in noise immunity and resolution compared with the traditional cross-correlation method. Pearson correlation coefficient method is a non-linear problem,particle swarm optimization( PSO) is a good nonlinear global optimization method which converges fast and is easy to implement. In this study,PSO is combined with the Pearson correlation coefficient method to achieve identifying fracture property and improve the computational efficiency.
文摘Many applications for control of autonomous platform are being developed and one important aspect is the excess of information, frequently redundant, that imposes a great computational cost in data processing. Taking into account the temporal coherence between consecutive frames, the PCC (Pearson's Correlation Coefficient) was proposed and applied as: discarding criteria methodology, dynamic power management solution, environment observer method which selects automatically only the regions-of-interest; and taking place in the obstacle avoidance context, as a method for collision risk estimation for vehicles in dynamic and unknown environments. Even if the PCC is a great tool to help the autonomous or semi-autonomous navigation, distortions in the imaging system, pixel noise, slight variations in the object's position relative to the camera, and other factors produce a false PCC threshold. Whereas there are homogeneous regions in the image, in order to obtain a more realistic Pearson's correlation, we propose to use some prior known environment information.
文摘Aim To study the reason of the insensitiveness of Pearson product-momentcorrelation coefficient as a similarity measure and the method to improve its sensitivity. MethodsExperimental and simulated data sets were used. Results The distribution range of the data setsinfluences the sensitivity of Pearson product-moment correlation coefficient. Weighted Pearsonproduct-moment correlation coefficient is more sensitive when the range of the data set is large.Conclusion Weighted Pearson product-moment correlation coefficient is necessary when the range ofthe data set is large.
基金National Key Research and Development Program of China(2021YFC2902103)National Natural Science Foundation of China(51934001)Fundamental Research Funds for the Central Universities(2023JCCXLJ02).
文摘This study investigates the impact of different water coupling coefficients on the blasting effect of red sandstone.The analysis is based on the theories of detonation wave and elastic wave,focusing on the variation in wall pressure of the blasting holes.Using DDNP explosive as the explosive load,blasting tests were conducted on red sandstone specimens with four different water coupling coefficients:1.20,1.33,1.50,and 2.00.The study examines the morphologies of the rock specimens after blasting under these different water coupling coefficients.Additionally,the fractal dimensions of the surface cracks resulting from the blasting were calculated to provide a quantitative evaluation of the extent of rock damage.CT scanning and 3D reconstruction were performed on the post-blasting specimens to visually depict the extent of damage and fractures within the rock.Additionally,the volume fractal dimension and damage degree of the post-blasting specimens are calculated.The findings are then combined with numerical simulation to facilitate auxiliary analysis.The results demonstrate that an increase in the water coupling coefficient leads to a reduction in the peak pressure on the hole wall and the crushing zone,enabling more of the explosion energy to be utilized for crack propagation following the explosion.The specimens exhibited distinct failure patterns,resulting in corresponding changes in fractal dimensions.The simulated pore wall pressure–time curve validated the derived theoretical results,whereas the stress cloud map and explosion energy-time curve demonstrated the buffering effect of the water medium.As the water coupling coefficient increases,the buffering effect of the water medium becomes increasingly prominent.
文摘The use of metamaterial enhances the performance of a specific class of antennas known as metamaterial antennas.The radiation cost and quality factor of the antenna are influenced by the size of the antenna.Metamaterial antennas allow for the circumvention of the bandwidth restriction for small antennas.Antenna parameters have recently been predicted using machine learning algorithms in existing literature.Machine learning can take the place of the manual process of experimenting to find the ideal simulated antenna parameters.The accuracy of the prediction will be primarily dependent on the model that is used.In this paper,a novel method for forecasting the bandwidth of the metamaterial antenna is proposed,based on using the Pearson Kernel as a standard kernel.Along with these new approaches,this paper suggests a unique hypersphere-based normalization to normalize the values of the dataset attributes and a dimensionality reduction method based on the Pearson kernel to reduce the dimension.A novel algorithm for optimizing the parameters of Convolutional Neural Network(CNN)based on improved Bat Algorithm-based Optimization with Pearson Mutation(BAO-PM)is also presented in this work.The prediction results of the proposed work are better when compared to the existing models in the literature.
文摘Background: The signal-to-noise ratio (SNR) is recognized as an index of measurements reproducibility. We derive the maximum likelihood estimators of SNR and discuss confidence interval construction on the difference between two correlated SNRs when the readings are from bivariate normal and bivariate lognormal distribution. We use the Pearsons system of curves to approximate the difference between the two estimates and use the bootstrap methods to validate the approximate distributions of the statistic of interest. Methods: The paper uses the delta method to find the first four central moments, and hence the skewness and kurtosis which are important in the determination of the parameters of the Pearsons distribution. Results: The approach is illustrated in two examples;one from veterinary microbiology and food safety data and the other on data from clinical medicine. We derived the four central moments of the target statistics, together with the bootstrap method to evaluate the parameters of Pearsons distribution. The fitted Pearsons curves of Types I and II were recommended based on the available data. The R-codes are also provided to be readily used by the readers.
基金Supported by Joint Fund of the Ministry of Education of China (Grant No.8091B022203)Youth Talent Support Project (Grant No.2022-JCJQ-QT-059)。
文摘Collisions between objects are a relatively common phenomenon in nature.Analyses of collision processes can greatly contribute to solving problems such as impact-rub faults and particle impacts.The coefficient of restitution is a critical parameter in the analysis of collision processes.Many experiments have shown that the coefficient of restitution is closely related to the plate thickness,and the smaller the plate thickness,the more inaccurate the coefficient of restitution predicted by the existing model,which seriously affects the process of collision analysis.To remedy this shortcoming,this paper proposes a plate thickness influence factor with the ratio of sphere diameter to plate thickness as the variable.The plate thickness influence factor can optimize the coefficient of restitution model to effectively predict the coefficient of restitution of impacting elastoplastic spheres with finite plate thickness.Finally,the validity of the new model is verified using a large amount of experimental data.
基金supported by National Natural Science Foundation of China(12061080,12161087 and 12261093)the Science and Technology Project of the Education Department of Jiangxi Province(GJJ211601)supported by National Natural Science Foundation of China(11871305).
文摘We study equations in divergence form with piecewise Cαcoefficients.The domains contain corners and the discontinuity surfaces are attached to the edges of the corners.We obtain piecewise C^(1,α) estimates across the discontinuity surfaces and provide an example to illustrate the issue regarding the regularity at the corners.
基金Project(2023YFC2907204)supported by the National Key Research and Development Program of ChinaProject(52325905)supported by the National Natural Science Foundation of ChinaProject(DJ-HXGG-2023-16)supported by the Key Technology Research Projects of Power China。
文摘Underground energy and resource development,deep underground energy storage and other projects involve the global stability of multiple interconnected cavern groups under internal and external dynamic disturbances.An evaluation method of the global stability coefficient of underground caverns based on static overload and dynamic overload was proposed.Firstly,the global failure criterion for caverns was defined based on its band connection of plastic-strain between multi-caverns.Then,overloading calculation of the boundary geostress and seismic intensity on the caverns model was carried out,and the critical unstable state of multi-caverns can be identified,if the plastic-strain band appeared between caverns during these overloading processes.Thus,the global stability coefficient for the multi-caverns under static loading and earthquake was obtained based on the corresponding overloading coefficient.Practical analysis for the Yingliangbao(YLB)hydraulic caverns indicated that this method can not only effectively obtain the global stability coefficient of caverns under static and dynamic earthquake conditions,but also identify the caverns’high-risk zone of local instability through localized plastic strain of surrounding rock.This study can provide some reference for the layout design and seismic optimization of underground cavern group.
基金supported by the National Magnetic Confinement Fusion Program of China(No.2019YFE03090200)by National Natural Science Foundation of China(Nos.11975231,12175277 and 12305249).
文摘Many experiments have demonstrated that resonant magnetic perturbation(RMP) can affect the turbulent transport at the edge of the tokamak. Through the Experimental Advanced Superconducting Tokamak(EAST) density modulation experiment, the particle transport coefficients were calculated using the experimental data, and the result shows that the particle transport coefficients increase with RMP. In this study, the six-field two-fluid model in BOUT++ is used to simulate the transport before and after density pump-out induced by RMP,respectively referred as the case without RMP and the case with RMP. In the linear simulations,the instabilities generally decreases for cases with RMP. In the nonlinear simulation, ELM only appears in the case without RMP. Additionally, the particle transport coefficient was analyzed,and the result shows that the particle transport coefficient becomes larger for the case with RMP,which is consistent with the experimental conclusion. Moreover, its magnitude is comparable to the results calculated from experimental data.
文摘This work is a simulation modelling with the LAMMPS calculation code of an electrode based on alkali metals (lithium, sodium and potassium) using the MEAM potential. For different multiplicities, two models were studied;with and without gap. In this work, we present the structural, physical and chemical properties of the lithium, sodium and potassium electrodes. For the structural properties, the cohesive energy and the mesh parameters were calculated, revealing that, whatever the chemical element selected, the compact hexagonal hcp structure is the most stable, followed by the face-centred cubic CFC structure, and finally the BCC structure. The most stable structure is lithium, with a cohesion energy of -6570 eV, and the lowest bcc-hcp transition energy of -0.553 eV/atom, followed by sodium. For physical properties, kinetic and potential energies were calculated for each of the sectioned chemical elements, with lithium achieving the highest value. Finally, for the chemical properties, we studied the diffusion coefficient and the activation energy. Only potassium followed an opposite order to the other two, with the quantities with lacunae being greater than those without lacunae, whatever the multiplicity. The order of magnitude of the diffusion coefficients is given by the relationship D<sub>Li</sub> > D<sub>Na</sub> > D<sub>k</sub> for the multiplicity 6*6*6, while for the activation energy the order is reversed.
基金Financial support of this work by National Natural Science Foundation of China(51976037)。
文摘The particle residence time distribution(RTD)and axial dispersion coefficient are key parameters for the design and operation of a pressurized circulating fluidized bed(PCFB).In this study,the effects of pressure(0.1-0.6 MPa),fluidizing gas velocity(2-7 m·s^(-1)),and solid circulation rate(10-90 kg·m^(-2)·s^(-1))on particle RTD and axial dispersion coefficient in a PCFB are numerically investigated based on the multiphase particle-in-cell(MP-PIC)method.The details of the gas-solid flow behaviors of PCFB are revealed.Based on the gas-solid flow pattern,the particles tend to move more orderly under elevated pressures.With an increase in either fluidizing gas velocity or solid circulation rate,the mean residence time of particles decreases while the axial dispersion coefficient increases.With an increase in pressure,the core-annulus flow is strengthened,which leads to a wider shape of the particle RTD curve and a larger mean particle residence time.The back-mixing of particles increases with increasing pressure,resulting in an increase in the axial dispersion coefficient.
文摘To support the explosive growth of Information and Communications Technology(ICT),Mobile Edge Comput-ing(MEC)provides users with low latency and high bandwidth service by offloading computational tasks to the network’s edge.However,resource-constrained mobile devices still suffer from a capacity mismatch when faced with latency-sensitive and compute-intensive emerging applications.To address the difficulty of running computationally intensive applications on resource-constrained clients,a model of the computation offloading problem in a network consisting of multiple mobile users and edge cloud servers is studied in this paper.Then a user benefit function EoU(Experience of Users)is proposed jointly considering energy consumption and time delay.The EoU maximization problem is decomposed into two steps,i.e.,resource allocation and offloading decision.The offloading decision is usually given by heuristic algorithms which are often faced with the challenge of slow convergence and poor stability.Thus,a combined offloading algorithm,i.e.,a Gini coefficient-based adaptive genetic algorithm(GCAGA),is proposed to alleviate the dilemma.The proposed algorithm optimizes the offloading decision by maximizing EoU and accelerates the convergence with the Gini coefficient.The simulation compares the proposed algorithm with the genetic algorithm(GA)and adaptive genetic algorithm(AGA).Experiment results show that the Gini coefficient and the adaptive heuristic operators can accelerate the convergence speed,and the proposed algorithm performs better in terms of convergence while obtaining higher EoU.The simulation code of the proposed algorithm is available:https://github.com/Grox888/Mobile_Edge_Computing/tree/GCAGA.