Many applications for control of autonomous platform are being developed and one important aspect is the excess of information, frequently redundant, that imposes a great computational cost in data processing. Taking ...Many applications for control of autonomous platform are being developed and one important aspect is the excess of information, frequently redundant, that imposes a great computational cost in data processing. Taking into account the temporal coherence between consecutive frames, the PCC (Pearson's Correlation Coefficient) was proposed and applied as: discarding criteria methodology, dynamic power management solution, environment observer method which selects automatically only the regions-of-interest; and taking place in the obstacle avoidance context, as a method for collision risk estimation for vehicles in dynamic and unknown environments. Even if the PCC is a great tool to help the autonomous or semi-autonomous navigation, distortions in the imaging system, pixel noise, slight variations in the object's position relative to the camera, and other factors produce a false PCC threshold. Whereas there are homogeneous regions in the image, in order to obtain a more realistic Pearson's correlation, we propose to use some prior known environment information.展开更多
Prediction of reservoir fracture is the key to explore fracture-type reservoir. When a shear-wave propagates in anisotropic media containing fracture,it splits into two polarized shear waves: fast shear wave and slow ...Prediction of reservoir fracture is the key to explore fracture-type reservoir. When a shear-wave propagates in anisotropic media containing fracture,it splits into two polarized shear waves: fast shear wave and slow shear wave. The polarization and time delay of the fast and slow shear wave can be used to predict the azimuth and density of fracture. The current identification method of fracture azimuth and fracture density is cross-correlation method. It is assumed that fast and slow shear waves were symmetrical wavelets after completely separating,and use the most similar characteristics of wavelets to identify fracture azimuth and density,but in the experiment the identification is poor in accuracy. Pearson correlation coefficient method is one of the methods for separating the fast wave and slow wave. This method is faster in calculating speed and better in noise immunity and resolution compared with the traditional cross-correlation method. Pearson correlation coefficient method is a non-linear problem,particle swarm optimization( PSO) is a good nonlinear global optimization method which converges fast and is easy to implement. In this study,PSO is combined with the Pearson correlation coefficient method to achieve identifying fracture property and improve the computational efficiency.展开更多
Based on the analysis of monitoring data on six pollution indexes of SO2, NO2, CO, O3, PM10 and PM2.5 from 53 monitoring points in 7 cities, including Beijing, Tianjin, Shijiazhuang, etc., from April 8 of 2014 to July...Based on the analysis of monitoring data on six pollution indexes of SO2, NO2, CO, O3, PM10 and PM2.5 from 53 monitoring points in 7 cities, including Beijing, Tianjin, Shijiazhuang, etc., from April 8 of 2014 to July 23 of 2014, this article adopted Pearson correlation coefficient method to determine the relevance among each pollutant of these cities with the help of SPSS. The results showed that such three leading indexes as SO2, PM10 and PM2.5 had strong correlation in Beijing, Tianjin and main cities of Hebei. Finally, some suggestions and preventive measures for the cooperative governance of air pollution in Beijing-Tianjin-Hebei Region were put forward, hoping this can help them.展开更多
We propose two simple regression models of Pearson correlation coefficient of two normal responses or binary responses to assess the effect of covariates of interest.Likelihood-based inference is established to estima...We propose two simple regression models of Pearson correlation coefficient of two normal responses or binary responses to assess the effect of covariates of interest.Likelihood-based inference is established to estimate the regression coefficients,upon which bootstrap-based method is used to test the significance of covariates of interest.Simulation studies show the effectiveness of the method in terms of type-I error control,power performance in moderate sample size and robustness with respect to model mis-specification.We illustrate the application of the proposed method to some real data concerning health measurements.展开更多
针对简单线性迭代聚类(Simple Linear Iterative Clustering,SLIC)算法对不同图像自适应性差的问题,提出了一种基于皮尔森相关系数的自适应SLIC超像素图像分割算法。首先,通过量化非间隔进行图像预处理,并计算颜色熵作为图像复杂度,从...针对简单线性迭代聚类(Simple Linear Iterative Clustering,SLIC)算法对不同图像自适应性差的问题,提出了一种基于皮尔森相关系数的自适应SLIC超像素图像分割算法。首先,通过量化非间隔进行图像预处理,并计算颜色熵作为图像复杂度,从而确定所需分割的超像素个数。其次,利用皮尔森相关系数作为相似性度量函数。最后,通过纹理特征对类内异常点进行滤除,确保种子点更新的准确性。实验结果表明,在超像素个数相同的情况下,基于皮尔森相关系数的自适应SLIC超像素图像分割算法相比主流超像素分割算法,可以获得更高的边缘命中率以及更低的欠分割率,性能优于LSC(Linear Spectral Clustering)、SLIC和SLIC0(Simple Linear Iterative Clustering Zero)算法。展开更多
文摘Many applications for control of autonomous platform are being developed and one important aspect is the excess of information, frequently redundant, that imposes a great computational cost in data processing. Taking into account the temporal coherence between consecutive frames, the PCC (Pearson's Correlation Coefficient) was proposed and applied as: discarding criteria methodology, dynamic power management solution, environment observer method which selects automatically only the regions-of-interest; and taking place in the obstacle avoidance context, as a method for collision risk estimation for vehicles in dynamic and unknown environments. Even if the PCC is a great tool to help the autonomous or semi-autonomous navigation, distortions in the imaging system, pixel noise, slight variations in the object's position relative to the camera, and other factors produce a false PCC threshold. Whereas there are homogeneous regions in the image, in order to obtain a more realistic Pearson's correlation, we propose to use some prior known environment information.
文摘Prediction of reservoir fracture is the key to explore fracture-type reservoir. When a shear-wave propagates in anisotropic media containing fracture,it splits into two polarized shear waves: fast shear wave and slow shear wave. The polarization and time delay of the fast and slow shear wave can be used to predict the azimuth and density of fracture. The current identification method of fracture azimuth and fracture density is cross-correlation method. It is assumed that fast and slow shear waves were symmetrical wavelets after completely separating,and use the most similar characteristics of wavelets to identify fracture azimuth and density,but in the experiment the identification is poor in accuracy. Pearson correlation coefficient method is one of the methods for separating the fast wave and slow wave. This method is faster in calculating speed and better in noise immunity and resolution compared with the traditional cross-correlation method. Pearson correlation coefficient method is a non-linear problem,particle swarm optimization( PSO) is a good nonlinear global optimization method which converges fast and is easy to implement. In this study,PSO is combined with the Pearson correlation coefficient method to achieve identifying fracture property and improve the computational efficiency.
文摘Based on the analysis of monitoring data on six pollution indexes of SO2, NO2, CO, O3, PM10 and PM2.5 from 53 monitoring points in 7 cities, including Beijing, Tianjin, Shijiazhuang, etc., from April 8 of 2014 to July 23 of 2014, this article adopted Pearson correlation coefficient method to determine the relevance among each pollutant of these cities with the help of SPSS. The results showed that such three leading indexes as SO2, PM10 and PM2.5 had strong correlation in Beijing, Tianjin and main cities of Hebei. Finally, some suggestions and preventive measures for the cooperative governance of air pollution in Beijing-Tianjin-Hebei Region were put forward, hoping this can help them.
文摘We propose two simple regression models of Pearson correlation coefficient of two normal responses or binary responses to assess the effect of covariates of interest.Likelihood-based inference is established to estimate the regression coefficients,upon which bootstrap-based method is used to test the significance of covariates of interest.Simulation studies show the effectiveness of the method in terms of type-I error control,power performance in moderate sample size and robustness with respect to model mis-specification.We illustrate the application of the proposed method to some real data concerning health measurements.
文摘针对简单线性迭代聚类(Simple Linear Iterative Clustering,SLIC)算法对不同图像自适应性差的问题,提出了一种基于皮尔森相关系数的自适应SLIC超像素图像分割算法。首先,通过量化非间隔进行图像预处理,并计算颜色熵作为图像复杂度,从而确定所需分割的超像素个数。其次,利用皮尔森相关系数作为相似性度量函数。最后,通过纹理特征对类内异常点进行滤除,确保种子点更新的准确性。实验结果表明,在超像素个数相同的情况下,基于皮尔森相关系数的自适应SLIC超像素图像分割算法相比主流超像素分割算法,可以获得更高的边缘命中率以及更低的欠分割率,性能优于LSC(Linear Spectral Clustering)、SLIC和SLIC0(Simple Linear Iterative Clustering Zero)算法。