Climate anomalies can cause natural disasters such as severe fires and floods on peatlands in South Sumatra.Factors that affect the natural disasters on peatlands include rainfall,groundwater level,and soil moisture.T...Climate anomalies can cause natural disasters such as severe fires and floods on peatlands in South Sumatra.Factors that affect the natural disasters on peatlands include rainfall,groundwater level,and soil moisture.This paper aims to study the effect of the climate anomalies in 2019 and 2020 and effects of these influencing factors on peatlands in South Sumatra.The data used in this study was derived from insitu measurement at two SESAME’s measurement stations in the study area.The results indicate that in the 2019 dry season,the rainfall was minimal,the lowest groundwater table depth was-1.14 m and the lowest soil moisture was 3.4%.In the 2020 dry season,rainfall was above the monthly average of 100 mm,the lowest groundwater level was-0.44 m,and the lowest soil moisture was 26.64%.There is also a strong correlation between soil moisture and groundwater table depth.The correlation between the two is stronger when there is less rainfall.展开更多
Using the large-scale thick 4# coal seam from the Mid-Jurassic in the southern Ordos Basin as an example, this paper studied the net primary productivity(NPP) level of the Mid-Jurassic peatland, and discussed its cont...Using the large-scale thick 4# coal seam from the Mid-Jurassic in the southern Ordos Basin as an example, this paper studied the net primary productivity(NPP) level of the Mid-Jurassic peatland, and discussed its control factors. Geophysical logging signals were used for a spectrum analysis to obtain the Milankovitch cycle parameters in coal seam. These were then used to calculate the accumulation rate of the residual carbon in 4# coal seam. The carbon loss can be calculated according to the density and residual carbon content of 4# coal seam. Then, the total carbon accumulation rate of the peatland was further derived, and the NPP of peatland was determined. The results show that the NPP of MidJurassic peatland is higher than that of Holocene at the same latitude. Comprehensive analysis indicates that the temperature, carbon dioxide and oxygen levels in atmosphere are the main control factors of the NPP of Mid-Jurassic peatland.展开更多
Peatlands are one of the major natural sources of methane (CH4), but the level of CH4 efflux is uncertain, especially in alpine peatlands. In this study, CH4 emission fluxes from natural and drained peatlands on the...Peatlands are one of the major natural sources of methane (CH4), but the level of CH4 efflux is uncertain, especially in alpine peatlands. In this study, CH4 emission fluxes from natural and drained peatlands on the Qinghai- Tibet Plateau, southwest China, were measured from June to October in 2013 using the opaque static chamber technique and the Fast Greenhouse Gas Analyzer (DLT-100, Los Gatos Research Corp.). CH4 emission fluxes ranged from 2.07 to 56.33 mg m^-2 h^-1 in natural peatlands and from 0.02 to 0.42 mg m^-2 h^-1 in drained peatlands. Mean CH4 emission flux was 19.13 mg m^-2 h^-1 in natural peatlands and 0.14 mg m^-2 h^-1 in drained peatlands. These results showed that drainage led to a significant decrease in CH4 emissions. CH4 emission fluxes for all sampling plots were significantly correlated with variation in water table depth for linear (R^2 = 0.453, P 〈 0.01) and exponential functions (R^2 = 0.429, P 〈 0.01).展开更多
Based on the results of the National Survey of Peat Resources(1983-1985) and the investigation results on the peatlands of China,the storage and density of the organic carbon in the peatlands of China were estimated.T...Based on the results of the National Survey of Peat Resources(1983-1985) and the investigation results on the peatlands of China,the storage and density of the organic carbon in the peatlands of China were estimated.The total organic carbon storage(OCS) of the peatlands in China,including bare peatlands and buried peatlands,are 1.503 × 109 t,unevenly distributed over 30 provincial level administrative units and 16 climatic zones.Peatland organic carbon storage(POCS) in Sichuan(6.45 × 108 t) and Yunnan provinces(2.91 × 108 t) is the highest,accounting for 62.29% of the total POCS.Humid zone of plateau has the highest POCS of 7.14 × 108 t,especially in the Zoigê Plateau,where the POCS is 6.30 × 108 t,accounting for 41.92% of the total POCS of China.The organic carbon density(OCD) of the peatlands in China mostly ranges from 80 kg/m3 to 140 kg/m3,and the range of the maximum is 270-360 kg/m3,and the minimum is less than 80 kg/m3.Divided by the Yanshan Mountain,Taihang Mountains and Hengduan Mountains,the peatland oganic carbon density(POCD) is lower on the northwestern side than that on the southeastern side.Jiangxi Province has the highest POCD due to the ancient buried peatlands.The OCD of the bare peatlands is mostly in the range of 60-150 kg/m3,and that of the buried peatlands is more than 100 kg/m3.In the bare peatlands,the OCD generally increases from the surface layer to the below surface layer,and then decreases with the depth.Although the peatlands area in China is small,the OCS per unit area is far higher than the other soil types,so peatlands protection can effectively mitigate climate change.展开更多
The grain-size distribution characteristics and grain-size parameters of sediment in two vertical sections of Daniugou peatland in the Changbai Mountains were systematically investigated.A comparative analysis of the ...The grain-size distribution characteristics and grain-size parameters of sediment in two vertical sections of Daniugou peatland in the Changbai Mountains were systematically investigated.A comparative analysis of the sediment granularity using a discriminative function with Hongyuan peat,red clay,loess-paleosol,fluvial deposit as well as lacustrine deposit was also conducted.It turns out that the vertical section of Daniugou peat ash is primarily constituted by clay and silt particles,and the content of sand is relatively small.Grain-size frequency curves generally show a single-peak modality while a bimodal pattern is detected in the upper layer.The grain-size component and peak pattern of grain-size frequency curves also illustrate that peat ash materials were transported to the peatland by long-range aeolian dust during the deposition process,while there existed short-distance dust influence in peat deposition of the upper layer.Comparisons of grain-size parameters and the discriminative Y-value of Daniugou peat ash with those of typical aeolian sediments show close similarities,suggesting the possibility that atmospheric dust transport processes were involved in the accumulation of peat again.Moreover,the variations of grain-size distribution suggest the local environmental deterioration which is just the driving force of local dust elevation.Grain-size analysis of peatland sediment is demonstrated to be one effective method to extract information about regional and global environmental evolution,and more attention should be paid to current local ecological environment and to seeking a balance between economic development and environmental protection in Northeast China.展开更多
Inspired by the importance of Redfield-type C:N:P ratios in global soils,we looked for analogous patterns in peatlands and aimed at deciphering the potential affecting factors.By analyzing a suite of peatlands soil da...Inspired by the importance of Redfield-type C:N:P ratios in global soils,we looked for analogous patterns in peatlands and aimed at deciphering the potential affecting factors.By analyzing a suite of peatlands soil data(n = 1031),mean soil organic carbon(SOC),total nitrogen(TN) and total phosphorous(TP) contents were 50.51%,1.45% and 0.13%,respectively,while average C:N,C:P and N:P ratios were 26.72,1186.00 and 46.58,respectively.C:N ratios showed smaller variations across different vegetation coverage and had less spatial heterogeneity than C:P and N:P ratios.No consistent C:N:P ratio,though with a general value of 1245:47:1,was found for entire peatland soils in China.The Northeast China,Tibet,Zoigê Plateau and parts of Xinjiang had high soil SOC,TN,TP,and C:P ratio.Qinghai,parts of the lower reaches of the Yangtze River,and the coast zones have low TP and N:P ratio.Significant differences for SOC,TN,TP,C:N,C:P and N:P ratios were observed across groups categorized by predominant vegetation.Moisture,temperature and precipitation all closely related to SOC,TN,TP and their pairwise ratios.The hydrothermal coefficient(RH),defined as annual average precipitation divided by temperature,positively and significantly related to C:N,C:P and N:P ratios,implying that ongoing climate change may prejudice peatlands as carbon sinks during the past 50 years in China.展开更多
This paper documents a 7800-year proxy record from the Shenjiadian peatland on the Sanjiang Plain in Northeast China.High-resolution plant macrofossil and colorimetric humification methods were used to reconstruct the...This paper documents a 7800-year proxy record from the Shenjiadian peatland on the Sanjiang Plain in Northeast China.High-resolution plant macrofossil and colorimetric humification methods were used to reconstruct the vegetation and hydrologic history from a 193 cm-long sedimentary profile.Detrended correspondence analysis(DCA) was applied to transform the raw plant macrofossil data into latent indices of peatland water level.The vegetation community transited from an Equisetum fluviatile community to a Carex lasiocarpa community at approximately 3800 cal yr BP and was followed by a Carex-shrub community at approximately 480 cal yr BP.Based on the plant macrofossil DCA axis 1 scores and humification values,we distinguished four hydrologic periods:a wet period from 7800 cal yr BP to 4500 cal yr BP,dry periods up to 1600 cal yr BP,drier periods until 300 cal yr BP,and the driest period from 300 cal yr BP until the present.Through a comparison with other climate records,we suggest that the East Asian summer monsoon(EAM) was the main driving force for vegetation and water level changes to the Shenjiadian peatland through its impacts on precipitation.展开更多
Age structure of a plant population carries important information on population dynamics. The traditional age classification of individuals by development phases could not explain the generation relationship neither b...Age structure of a plant population carries important information on population dynamics. The traditional age classification of individuals by development phases could not explain the generation relationship neither between individuals nor between modules, and it could not accurately predict the future of population or the tendency of peatland evolution. In a peatland of the Xiao Hinggan Mountains, China, at the middle of the growth season, the age structures of 3 modules, ramets, active buds and rhizomes of a Carex middendorffii clonal population were investigated, with the method of classifying age classes of ramets and active buds by counting generation quantity of tiller nodes, and classifying age classes of rhizomes by their real survival time. The quantity of vegetative ramets was dominant. Tiller nodes of ramets can propagate vegetatively for a maximum of 3 generations. The population of ramets consisted of 3 age classes of ramets at the middle of the growth season, and showed a stable age structure. In the two sampling events, there was no significant difference between quantities and age structure of the population. The maximum age of an excavated rhizome was 12 years old. Rhizomes were classified in 8 age classes, and age classes 4-6 contributed most to the total biomass. There was no significant difference in total length and total biomass per unit area, or in biomass per unit length in rhizomes between the two samplings. Four age classes of active buds were recognized, and their number increased from July to August. The Carex middendorffii clonal population achieved regeneration by budding from the tiller nodes of ramets. The age structures of the 3 modules suggested that the Carex middendorffii clonal population could persist in the early development phase of the oligotrophic peatland in the Xiao Hinggan Mountains, but it could not be dominant. It also faces the risk to disappear from the community as the peatland develops further.展开更多
Peat bogs are regarded as one of the faithful archives of atmospheric polycyclic aromatic hydrocarbons(PAHs) deposition, and a large number of studies on PAHs accumulation in peatlands have been reported in Europe and...Peat bogs are regarded as one of the faithful archives of atmospheric polycyclic aromatic hydrocarbons(PAHs) deposition, and a large number of studies on PAHs accumulation in peatlands have been reported in Europe and North America. Comparatively little information is available on peat chronological records of atmospheric PAHs flux in China. We investigated the concentrations and historical accumulation rates of PAHs(AR PAHs) through geochemical analysis of three 210Pb-dated ombrotrophic peat cores from Great Hinggan Mountain, northeast China. Eight USEPA priority PAHs were detected and they are naphthalene(Nap), acenaphthylene(Acl), acenaphthene(Ace), fluorence(Flu), phenanthrene(Phe), anthracene(Ant), fluoranthene(Fla) and pyrene(Pyr), respectively. The average total eight PAHs(tPAHs) concentrations are 135.98- 262.43 μg kg-1 and the average AR tPAHs over the last two centuries are 96.45- 135.98 μg m-2 yr-1. The Ace, Acl and Phe account for 30.93- 54.04%, 25.29- 35.81%, and 9.14- 19.84% of the tPAHs, respectively, and have significant positive correlations with the tPAH. As a result, they are regarded as the iconic compounds of PAHs pollution in this area. A ca.200-yr atmospheric PAHs contamination history was reconstructed from the temporal sequences of bothconcentration and AR tPAHs, suggesting the variation of local environmental pollution. The main sources of the PAHs are identified by two isomer ratios as petrogenic origin including oil extraction and refining process as well as their combustions for industrial development. In addition, the contribution of coal combustion for industrial activities and resident heating could not be ignored. But prior to 1860, the undeveloped industry and most of agricultural activities might mainly account for the low level of PAHs, although it could infer a long-range input of atmospheric PAHs from other industrial areas. Therefore, there is a global implication to study longterm PAHs pollution records and all the results will provide practical significance in formulating policies to achieve sustainable and healthy development.展开更多
In the alpine regions of Hindu Kush,Himalayas and Karakorum, climatic and topographic conditions can support the formation of peat,important for the livelihood of the local communities,and ecological services alike. T...In the alpine regions of Hindu Kush,Himalayas and Karakorum, climatic and topographic conditions can support the formation of peat,important for the livelihood of the local communities,and ecological services alike. These peatlands are a source of fuel for the local community, habitat for nesting birds, and water regulation at source for rivers.Ground-based surveys of high-altitude peatlands are not only difficult, but also expensive and time consuming. Therefore, a method using cost-effective remote sensing technology is required. In this article we assessed the distribution and extent of highaltitude peatlands in a 2000 ha area of Broghil Valley using Landsat 8 data. The composite image was trained using a priori knowledge of the area, and classified into peatland and non-peatland land covers using a supervised decision tree algorithm. The Landsat-based classification map was compared with field data collected with a differential GPS. This comparison suggests 82% overall accuracy, which is fairly high for high altitude areas. The method was successfully applied and has the potential to be replicated for other areas in Pakistan and the highaltitude regions of the neighbouring Asian countries.展开更多
Bryophytes dominate northern peatlands. Obtaining reliable measurements of moss-growth and how it may be affected by global changes are therefore important. Several methods have been used to measure moss-growth but it...Bryophytes dominate northern peatlands. Obtaining reliable measurements of moss-growth and how it may be affected by global changes are therefore important. Several methods have been used to measure moss-growth but it is unclear how comparable they are in different conditions and this uncertainty undermines comparisons among studies. In a field experiment we measured the growth and production of Sphagnum fallax (Sphagnum) and Polytrichum strictum (Polytrichum) using two handling methods, using cut and uncut plants, and three growth-variables, height-growth, length-growth, and mass-growth. We aimed “benchmarking” a combination of six methodological options against exactly the same set of factorial experiments: atmospheric CO2 enrichment and N addition. The two handling methods produced partly different results: in half of the cases, one method revealed a significant treatment effect but the other one did not: significant negative effects on growth were only observed on uncut plants for elevated CO2 and on cut plants for N addition. Furthermore, the correspondence between measurements made with various growth-variables depended on the species and, to a lesser extent, treatments. Sphagnum and Polytrichum growth was inhibited under elevated CO2, and correlated to higher ammonium values. Sphagnum was however less affected than Polytrichum and the height difference between the two species decreased. N addition reduced the P/N ratio and probably induced P-limiting conditions. Sphagnum growth was more inhibited than Polytrichum and the height difference between the two species increased. Our data show that such a problem indeed exists between the cut and uncut handling methods. Not only do the results differ in absolute terms by as much as 82% but also do their comparisons and interpretations depend on the handling method—and thus the interpretation would be biased—in half of the cases. These results call for caution when comparing factorial studies based on different handling methods.展开更多
Isotopic signature is a powerful tool to discriminate methane(CH_(4)) source types and constrain regional and global scale CH_(4) budgets.Peatlands on the Qinghai-Tibetan Plateau are poorly understood about the isotop...Isotopic signature is a powerful tool to discriminate methane(CH_(4)) source types and constrain regional and global scale CH_(4) budgets.Peatlands on the Qinghai-Tibetan Plateau are poorly understood about the isotopic signature of CH_(4) due to the limited experimental conditions.In this study,three campaigns of diurnal air samples spacing 2-3 h were taken from an alpine peatland on the eastern Qinghai-Tibetan Plateau to investigate its source signal characteristics.Both CH_(4) concentration and its stable carbon isotope(δ^(13)C-CH_(4)) were measured to derive the carbon isotopic signature of the CH_(4) source using the Keeling plot technique.Diurnal variation patterns in CH_(4) concentration and δ^(13)C-CH_(4) were observed during summertime,with depleted δ^(13)C-CH_(4) signals and high CH_(4) concentration appearing at nighttime.The δ^(13)C-CH4 signature during summer was calculated to be-71 % ± 1.3%,which falls within the range of other wetland studies and close to high-latitude peatlands.The boundary layer dynamic and CH_(4) source were supposed to influence the measured CH_(4) concentration and δ^(13)C-CH_(4.)Further investigations of CH_(4) isotopic signals into the nongrowing season are still needed to constrain the δ^(13)C-CH_(4) signature and its environmental controls in this region.展开更多
Background:Black spruce(Picea mariana(Mill.)BSP)-forested peatlands are widespread ecosystems in boreal North America in which peat accumulation,known as the paludification process,has been shown to induce forest grow...Background:Black spruce(Picea mariana(Mill.)BSP)-forested peatlands are widespread ecosystems in boreal North America in which peat accumulation,known as the paludification process,has been shown to induce forest growth decline.The continuously evolving environmental conditions(e.g.,water table rise,increasing peat thickness)in paludified forests may require tree growth mechanism adjustments over time.In this study,we investigate tree ecophysiological mechanisms along a paludification gradient in a boreal forested peatland of eastern Canada by combining peat-based and tree-ring analyses.Carbon and oxygen stable isotopes in tree rings are used to document changes in carbon assimilation rates,stomatal conductance,and water use efficiency.In addition,paleohydrological analyses are performed to evaluate the dynamical ecophysiological adjustments of black spruce trees to site-specific water table variations.Results:Increasing peat accumulation considerably impacts forest growth,but no significant differences in tree water use efficiency(iWUE)are found between the study sites.Tree-ring isotopic analysis indicates no iWUE decrease over the last 100 years,but rather an important increase at each site up to the 1980 s,before iWUE stabilized.Surprisingly,inferred basal area increments do not reflect such trends.Therefore,iWUE variations do not reflect tree ecophysiological adjustments required by changes in growing conditions.Local water table variations induce no changes in ecophysiological mechanisms,but a synchronous shift in iWUE is observed at all sites in the mid-1980 s.Conclusions:Our study shows that paludification induces black spruce growth decline without altering tree water use efficiency in boreal forested peatlands.These findings highlight that failing to account for paludification-related carbon use and allocation could result in the overestimation of aboveground biomass production in paludified sites.Further research on carbon allocation strategies is of utmost importance to understand the carbon sink capacity of these widespread ecosystems in the context of climate change,and to make appropriate forest management decisions in the boreal biome.展开更多
Peatland in Southeast Asia has an important function in the provision of ecosystem services such as carbon sink, climate regulation, water supply, biodiversity, and others. Recurrent fires in the peatland, especially ...Peatland in Southeast Asia has an important function in the provision of ecosystem services such as carbon sink, climate regulation, water supply, biodiversity, and others. Recurrent fires in the peatland, especially in Indonesia, have changed peatland functions from carbon sequestration to carbon emission, causing severe environmental and economic problems. Fire prevention requires an understanding of the factors affecting fire in peatland. We compared fire occurrences in 2014 between different land cover types, land management systems, landholders, and proximity to roads and canals in Riau Province, Indonesia. Remote sensing and field data were collected and analyzed. Shrubland was the most fire-prone land cover, while plantations and mangrove forests were the least. Shrubland has high fire occurrence regardless of land management and landholder type. Peat swamp forests that are allowed to be utilized were more fire-prone than conserved peat swamp forests. Oil palms from unregistered companies had more fires than those from registered companies and smallholders. Coconut and sago plantations from companies had more fires than smallholder cultivation. Proximity to roads and canals affects the occurrence of fires in peat swamp forests;however, proximity had less of an effect on fire occurrence in shrubland. The high percentage of burned areas in shrubland showed that land cover was a major factor that affects fire in peatland, followed by land management, landholders, and proximity to roads and canals. These findings indicate the importance of law enforcement and land management systems, management schemes by different landholders, and the spatial arrangement of land cover, roads, and canals for integrated peatland management and restoration of shrubland into peat swamp forest and other fire-resistant land cover types with sustainable production.展开更多
Cerro Tocorpuri, belongs to the II region of Chile, in San Pedro de Atacama, on the border of Chile-Bolivia. The presence of a more or less constant supply of water conditions the existence of characteristic vegetatio...Cerro Tocorpuri, belongs to the II region of Chile, in San Pedro de Atacama, on the border of Chile-Bolivia. The presence of a more or less constant supply of water conditions the existence of characteristic vegetation systems known as bogs (bofedales, vegas and marshes). These wetlands have a cultural, environmental and economic social importance. As a result of the exploitation of aquatic rights, peatlands began to dry up with the consequent loss of natural resources and damage to ancestral rights, and natural resources. The activities of microorganisms in wetlands play an important role in biogeochemical processes. The interaction between microbial diversity and soil, influences to the ability of the ecosystem to recover from stress (resilience). In the present work, the soil characteristics and the associated microbial biodiversity were studied, comparing samples of active and deteriorated peatland. It was seen that the loss of water causes great changes in the physical-chemical characteristics of the soil, which leads to a modification of the microbiota Proteobacteria decreased by 18% in deteriorated peatlands, which are evident more sensible to extreme conditions while Acidobacteria, Actinobacteria increased in these sample showing a better adaptation to the change of conditions. In view of the fact that high Andean Peatlands are exposed to increasing environmental impact, this preliminary comparative study of pristine and altered soil could guide the research directed to recovery of dead peatlands strategies.展开更多
Peatlands represent one of the most important economic resources and abandoned peatlands after mining can be considered as ecological resources by re-vegetation restoration or management. However, some environmental p...Peatlands represent one of the most important economic resources and abandoned peatlands after mining can be considered as ecological resources by re-vegetation restoration or management. However, some environmental problems like particles from peatlands and their effects in the water system have to be characterized. Since centuries, artificial drainage has been a current practice for the mining of peatlands. Mainly mined for horticultural purpose, New Brunswick's peatlands--predominantly located in the eastern of the province--cover about 140,000 ha. At the downstream end of the drainage system, the water from peatlands flow into sedimentation basins. Drainage waters are often laden with solid particles. Once they have flowed through the ponds to allow sediment settling, the water is released into the water system. This paper describes the spatio-temporal evolution of suspended solids from 12 New Brunswick drained peatlands. The studied sites were characterized by some heterogeneity in the concentration of suspended solids. This study also provides knowledge on the suspended solids amount that can be released by drained peatlands, and it proposes a function to estimate the concentration of suspended solids by using climate variables; and identifies some potential ecological risks.展开更多
Peatland ecosystems play an important role in the global carbon cycle because they act as a pool or sink for the carbon cycle. However, the relationship between seasonality effect factors and net ecosystem CO<sub&g...Peatland ecosystems play an important role in the global carbon cycle because they act as a pool or sink for the carbon cycle. However, the relationship between seasonality effect factors and net ecosystem CO<sub>2</sub> exchange (NEE) remains to be clarified, particularly for the non-growing season. Here, based on the eddy covariance technique, NEE in the peatland ecosystem of Central China was examined to measure two years’ (2016 and 2017) accumulation of carbon dioxide emissions with contrasting seasonal distribution of environmental factors. Our results demonstrate the cumulative net ecosystem CO<sub>2</sub> emissions during the study period was in the first non-growing season 2.94 ± 4.83 μmolCO<sub>2</sub> m<sup><span style="color:#4F4F4F;font-family:" font-size:14px;white-space:normal;background-color:#ffffff;"="">-</span>2<span style="white-space:nowrap;">.</span></sup>s<sup><span style="color:#4F4F4F;font-family:" font-size:14px;white-space:normal;background-color:#ffffff;"="">-</span>1</sup> with the lowest values in the same year in first growing season was <span style="color:#4F4F4F;font-family:" font-size:14px;white-space:normal;background-color:#ffffff;"="">-</span>2.79 ± 4.92 μmolCO<sub>2</sub> m<sup><span style="color:#4F4F4F;font-family:" font-size:14px;white-space:normal;background-color:#ffffff;"="">-</span>2</sup><span style="font-family:" font-size:13.3333px;white-space:normal;"=""><span style="white-space:nowrap;"><sup>.</sup></span></span>s<sup><span style="color:#4F4F4F;font-family:" font-size:14px;white-space:normal;background-color:#ffffff;"="">-</span>1</sup>. The results indicate the effect of seasonal variations of NEE can be directly reflected in daily and seasonal variations in growth and respiration of peatland ecosystem by environmental parameters over different growing stages.展开更多
As a result of several decades of peat extraction, the area of cutaway peatlands in Finland totals ca. 50,000 ha. Furthermore, some 2000 - 3000 ha of peatlands are abandoned annually from active peat extraction. Fores...As a result of several decades of peat extraction, the area of cutaway peatlands in Finland totals ca. 50,000 ha. Furthermore, some 2000 - 3000 ha of peatlands are abandoned annually from active peat extraction. Forestry is considered to be their main after-use option. However, since cutaway peat is generally rich in nitrogen, but poor in phosphorus and potassium, soil amelioration measures are needed for successful vegetation and afforestation. Soil preparations bringing mineral soil into peat surface or recycling of ash containing P and K are alternative ways for soil amelioration. We studied the initial effects of soil preparation and ash fertilization on soil CO<sub>2</sub>-effluxes and colonisation of cutaway peat by vegetation. Oppositely to the previous studies, this study shows that carbon released from the residual peat may be so high that the ash-fertilized cutaway peatlands still act as sources of carbon even after afforestation. However, even though the CO<sub>2</sub>-effluxes following ash fertilization or soil preparation may occasionally exceed the carbon sequestration into growing tree stands, afforestation mostly compensates the CO<sub>2</sub>-effluxes if also we take into consideration the below-ground biomass. In conclusion, our study shows that although ash fertilization enhances the CO<sub>2</sub>-effluxes into the atmosphere, it has beneficial effects on the environment by enabling rapid colonisation of vegetation on these sites which would remain vegetationless for decades without soil amelioration.展开更多
Peatland drainage can affect headwater systems, causing changes in bed substrate composition and hydraulic geome-try in small brooks. We studied hydraulic geometry and sediment properties in 14 boreal forest brook rea...Peatland drainage can affect headwater systems, causing changes in bed substrate composition and hydraulic geome-try in small brooks. We studied hydraulic geometry and sediment properties in 14 boreal forest brook reaches (width < 2 m), characterised by well-vegetated banks, high sinuosity and low width-to-depth ratio, in north-east Finland. The aims were to obtain information from channel geometry and to study brook response to extensive sediment load from land use. The results indicate that bed sediment in brooks is almost continuously mobile, which negatively reflect to ecological status of the brooks. These headwater meandering parts have limited sediment transport capacity and require a long period to recover from artificially increased sediment input from peat drainage. However, different reaches can be prioritised for restoration according to the characteristics of silted bed sediment or sediment origins. Brook width appeared to have large natural variation, causing great local velocity variations. This needs to be taken into consideration when restoring straightened reaches in small headwater areas, e.g., width in restored reaches cannot be uniform but should include variations.展开更多
The humification degree of peat is a significant climatic proxy for paleoclimate change.Using the alkali-extraction method,a time series of absorbance values of the Hani peatland,Northeast China,was determined,which i...The humification degree of peat is a significant climatic proxy for paleoclimate change.Using the alkali-extraction method,a time series of absorbance values of the Hani peatland,Northeast China,was determined,which is used as an indicator for the humification degree of peat.Combined with14C dating data of peat cellulose,and compared withδ18O andδ13C time series of the cellulose in the Hani peatland,the evidence for the existence of14 ka paleoclimate was provided.Higher humification degrees hint a warmer-wetter climate,and vice versa.It also reconstructs the four stages of Holocene climate evolution in this region:11.5–9.8 cal ka B.P.,warm and wet period;9.8–9.0 cal ka B.P.,cold and dry period;9.0–4.8 cal ka B.P.,warm and wet period;and 4.8–0 cal ka B.P.,warm-wet and dry-cold alternation period.Meanwhile,it is revealed that the abrupt climate shifts signals such as the "8.2 ka" event and the "4.2 ka" event.Results showed that the Hani peat humification degree is of sensitive response to paleoclimate change.Therefore,it is a feasible method to analyze the relationship between paleoclimate change and peat humification degree.展开更多
文摘Climate anomalies can cause natural disasters such as severe fires and floods on peatlands in South Sumatra.Factors that affect the natural disasters on peatlands include rainfall,groundwater level,and soil moisture.This paper aims to study the effect of the climate anomalies in 2019 and 2020 and effects of these influencing factors on peatlands in South Sumatra.The data used in this study was derived from insitu measurement at two SESAME’s measurement stations in the study area.The results indicate that in the 2019 dry season,the rainfall was minimal,the lowest groundwater table depth was-1.14 m and the lowest soil moisture was 3.4%.In the 2020 dry season,rainfall was above the monthly average of 100 mm,the lowest groundwater level was-0.44 m,and the lowest soil moisture was 26.64%.There is also a strong correlation between soil moisture and groundwater table depth.The correlation between the two is stronger when there is less rainfall.
基金provided by the National Natural Science Foundation of China (No. 41402086)the Colleges Scientific Research Projects of Shandong Province (No. J14LH06)+1 种基金the provincial excellent young talents in colleges and universities in Shandong Province natural science foundation of the mutual funds (No. ZR2015JL016)State key research and development plan (No. 2017YFC0601400)
文摘Using the large-scale thick 4# coal seam from the Mid-Jurassic in the southern Ordos Basin as an example, this paper studied the net primary productivity(NPP) level of the Mid-Jurassic peatland, and discussed its control factors. Geophysical logging signals were used for a spectrum analysis to obtain the Milankovitch cycle parameters in coal seam. These were then used to calculate the accumulation rate of the residual carbon in 4# coal seam. The carbon loss can be calculated according to the density and residual carbon content of 4# coal seam. Then, the total carbon accumulation rate of the peatland was further derived, and the NPP of peatland was determined. The results show that the NPP of MidJurassic peatland is higher than that of Holocene at the same latitude. Comprehensive analysis indicates that the temperature, carbon dioxide and oxygen levels in atmosphere are the main control factors of the NPP of Mid-Jurassic peatland.
基金financially supported by Grant Projects on Clean Development Mechanism in China(No.2012076)the special basic scientific research expenses from Research Institute of Forestry New Technology,Chinese Academy of Forestry(No.CAFINT2014K06)
文摘Peatlands are one of the major natural sources of methane (CH4), but the level of CH4 efflux is uncertain, especially in alpine peatlands. In this study, CH4 emission fluxes from natural and drained peatlands on the Qinghai- Tibet Plateau, southwest China, were measured from June to October in 2013 using the opaque static chamber technique and the Fast Greenhouse Gas Analyzer (DLT-100, Los Gatos Research Corp.). CH4 emission fluxes ranged from 2.07 to 56.33 mg m^-2 h^-1 in natural peatlands and from 0.02 to 0.42 mg m^-2 h^-1 in drained peatlands. Mean CH4 emission flux was 19.13 mg m^-2 h^-1 in natural peatlands and 0.14 mg m^-2 h^-1 in drained peatlands. These results showed that drainage led to a significant decrease in CH4 emissions. CH4 emission fluxes for all sampling plots were significantly correlated with variation in water table depth for linear (R^2 = 0.453, P 〈 0.01) and exponential functions (R^2 = 0.429, P 〈 0.01).
基金Under the auspices of Open Fund of Key Laboratory of Wetland Ecology and Environment of Chinese Academy of Sciences(No.WELF-2009-B-001)Humanities and Social Sciences Research Project of Chinese Ministry of Education(No. 09YJCZH117)National Natural Science Foundation of China(No.51079155)
文摘Based on the results of the National Survey of Peat Resources(1983-1985) and the investigation results on the peatlands of China,the storage and density of the organic carbon in the peatlands of China were estimated.The total organic carbon storage(OCS) of the peatlands in China,including bare peatlands and buried peatlands,are 1.503 × 109 t,unevenly distributed over 30 provincial level administrative units and 16 climatic zones.Peatland organic carbon storage(POCS) in Sichuan(6.45 × 108 t) and Yunnan provinces(2.91 × 108 t) is the highest,accounting for 62.29% of the total POCS.Humid zone of plateau has the highest POCS of 7.14 × 108 t,especially in the Zoigê Plateau,where the POCS is 6.30 × 108 t,accounting for 41.92% of the total POCS of China.The organic carbon density(OCD) of the peatlands in China mostly ranges from 80 kg/m3 to 140 kg/m3,and the range of the maximum is 270-360 kg/m3,and the minimum is less than 80 kg/m3.Divided by the Yanshan Mountain,Taihang Mountains and Hengduan Mountains,the peatland oganic carbon density(POCD) is lower on the northwestern side than that on the southeastern side.Jiangxi Province has the highest POCD due to the ancient buried peatlands.The OCD of the bare peatlands is mostly in the range of 60-150 kg/m3,and that of the buried peatlands is more than 100 kg/m3.In the bare peatlands,the OCD generally increases from the surface layer to the below surface layer,and then decreases with the depth.Although the peatlands area in China is small,the OCS per unit area is far higher than the other soil types,so peatlands protection can effectively mitigate climate change.
基金Under the auspices of National Natural Science Foundation of China (No 40871089, 40830535)State Key Laboratory of Loess and Quaternary Geology,Institute of Earth Environment, Chinese Academy of Sciences (No SKLLQG0910)
文摘The grain-size distribution characteristics and grain-size parameters of sediment in two vertical sections of Daniugou peatland in the Changbai Mountains were systematically investigated.A comparative analysis of the sediment granularity using a discriminative function with Hongyuan peat,red clay,loess-paleosol,fluvial deposit as well as lacustrine deposit was also conducted.It turns out that the vertical section of Daniugou peat ash is primarily constituted by clay and silt particles,and the content of sand is relatively small.Grain-size frequency curves generally show a single-peak modality while a bimodal pattern is detected in the upper layer.The grain-size component and peak pattern of grain-size frequency curves also illustrate that peat ash materials were transported to the peatland by long-range aeolian dust during the deposition process,while there existed short-distance dust influence in peat deposition of the upper layer.Comparisons of grain-size parameters and the discriminative Y-value of Daniugou peat ash with those of typical aeolian sediments show close similarities,suggesting the possibility that atmospheric dust transport processes were involved in the accumulation of peat again.Moreover,the variations of grain-size distribution suggest the local environmental deterioration which is just the driving force of local dust elevation.Grain-size analysis of peatland sediment is demonstrated to be one effective method to extract information about regional and global environmental evolution,and more attention should be paid to current local ecological environment and to seeking a balance between economic development and environmental protection in Northeast China.
基金Under the auspices of National Key Research Program of China(No.2016YFC0500404-5)National Natural Science Foundation of China(No.41671081,41471081,41671087)Foundation of Jilin Province(No.20140520141JH)
文摘Inspired by the importance of Redfield-type C:N:P ratios in global soils,we looked for analogous patterns in peatlands and aimed at deciphering the potential affecting factors.By analyzing a suite of peatlands soil data(n = 1031),mean soil organic carbon(SOC),total nitrogen(TN) and total phosphorous(TP) contents were 50.51%,1.45% and 0.13%,respectively,while average C:N,C:P and N:P ratios were 26.72,1186.00 and 46.58,respectively.C:N ratios showed smaller variations across different vegetation coverage and had less spatial heterogeneity than C:P and N:P ratios.No consistent C:N:P ratio,though with a general value of 1245:47:1,was found for entire peatland soils in China.The Northeast China,Tibet,Zoigê Plateau and parts of Xinjiang had high soil SOC,TN,TP,and C:P ratio.Qinghai,parts of the lower reaches of the Yangtze River,and the coast zones have low TP and N:P ratio.Significant differences for SOC,TN,TP,C:N,C:P and N:P ratios were observed across groups categorized by predominant vegetation.Moisture,temperature and precipitation all closely related to SOC,TN,TP and their pairwise ratios.The hydrothermal coefficient(RH),defined as annual average precipitation divided by temperature,positively and significantly related to C:N,C:P and N:P ratios,implying that ongoing climate change may prejudice peatlands as carbon sinks during the past 50 years in China.
基金Under the auspices of Chinese Academy of Sciences/State Administration of Foreign Experts Affairs(CAS/SAFEA)International Partnership Program for Creative Research Teams(No.KZZD-EW-TZ-07)National Basic Research Program of China(No.2012CB956100)National Natural Science Foundation of China(No.41271209,41401099)
文摘This paper documents a 7800-year proxy record from the Shenjiadian peatland on the Sanjiang Plain in Northeast China.High-resolution plant macrofossil and colorimetric humification methods were used to reconstruct the vegetation and hydrologic history from a 193 cm-long sedimentary profile.Detrended correspondence analysis(DCA) was applied to transform the raw plant macrofossil data into latent indices of peatland water level.The vegetation community transited from an Equisetum fluviatile community to a Carex lasiocarpa community at approximately 3800 cal yr BP and was followed by a Carex-shrub community at approximately 480 cal yr BP.Based on the plant macrofossil DCA axis 1 scores and humification values,we distinguished four hydrologic periods:a wet period from 7800 cal yr BP to 4500 cal yr BP,dry periods up to 1600 cal yr BP,drier periods until 300 cal yr BP,and the driest period from 300 cal yr BP until the present.Through a comparison with other climate records,we suggest that the East Asian summer monsoon(EAM) was the main driving force for vegetation and water level changes to the Shenjiadian peatland through its impacts on precipitation.
文摘Age structure of a plant population carries important information on population dynamics. The traditional age classification of individuals by development phases could not explain the generation relationship neither between individuals nor between modules, and it could not accurately predict the future of population or the tendency of peatland evolution. In a peatland of the Xiao Hinggan Mountains, China, at the middle of the growth season, the age structures of 3 modules, ramets, active buds and rhizomes of a Carex middendorffii clonal population were investigated, with the method of classifying age classes of ramets and active buds by counting generation quantity of tiller nodes, and classifying age classes of rhizomes by their real survival time. The quantity of vegetative ramets was dominant. Tiller nodes of ramets can propagate vegetatively for a maximum of 3 generations. The population of ramets consisted of 3 age classes of ramets at the middle of the growth season, and showed a stable age structure. In the two sampling events, there was no significant difference between quantities and age structure of the population. The maximum age of an excavated rhizome was 12 years old. Rhizomes were classified in 8 age classes, and age classes 4-6 contributed most to the total biomass. There was no significant difference in total length and total biomass per unit area, or in biomass per unit length in rhizomes between the two samplings. Four age classes of active buds were recognized, and their number increased from July to August. The Carex middendorffii clonal population achieved regeneration by budding from the tiller nodes of ramets. The age structures of the 3 modules suggested that the Carex middendorffii clonal population could persist in the early development phase of the oligotrophic peatland in the Xiao Hinggan Mountains, but it could not be dominant. It also faces the risk to disappear from the community as the peatland develops further.
基金funded by the National Natural Science Foundation of China(Grant No.4130121541271209)+1 种基金the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20131058)the National Basic Research Program of China(Grant No.2012CB956100)
文摘Peat bogs are regarded as one of the faithful archives of atmospheric polycyclic aromatic hydrocarbons(PAHs) deposition, and a large number of studies on PAHs accumulation in peatlands have been reported in Europe and North America. Comparatively little information is available on peat chronological records of atmospheric PAHs flux in China. We investigated the concentrations and historical accumulation rates of PAHs(AR PAHs) through geochemical analysis of three 210Pb-dated ombrotrophic peat cores from Great Hinggan Mountain, northeast China. Eight USEPA priority PAHs were detected and they are naphthalene(Nap), acenaphthylene(Acl), acenaphthene(Ace), fluorence(Flu), phenanthrene(Phe), anthracene(Ant), fluoranthene(Fla) and pyrene(Pyr), respectively. The average total eight PAHs(tPAHs) concentrations are 135.98- 262.43 μg kg-1 and the average AR tPAHs over the last two centuries are 96.45- 135.98 μg m-2 yr-1. The Ace, Acl and Phe account for 30.93- 54.04%, 25.29- 35.81%, and 9.14- 19.84% of the tPAHs, respectively, and have significant positive correlations with the tPAH. As a result, they are regarded as the iconic compounds of PAHs pollution in this area. A ca.200-yr atmospheric PAHs contamination history was reconstructed from the temporal sequences of bothconcentration and AR tPAHs, suggesting the variation of local environmental pollution. The main sources of the PAHs are identified by two isomer ratios as petrogenic origin including oil extraction and refining process as well as their combustions for industrial development. In addition, the contribution of coal combustion for industrial activities and resident heating could not be ignored. But prior to 1860, the undeveloped industry and most of agricultural activities might mainly account for the low level of PAHs, although it could infer a long-range input of atmospheric PAHs from other industrial areas. Therefore, there is a global implication to study longterm PAHs pollution records and all the results will provide practical significance in formulating policies to achieve sustainable and healthy development.
文摘In the alpine regions of Hindu Kush,Himalayas and Karakorum, climatic and topographic conditions can support the formation of peat,important for the livelihood of the local communities,and ecological services alike. These peatlands are a source of fuel for the local community, habitat for nesting birds, and water regulation at source for rivers.Ground-based surveys of high-altitude peatlands are not only difficult, but also expensive and time consuming. Therefore, a method using cost-effective remote sensing technology is required. In this article we assessed the distribution and extent of highaltitude peatlands in a 2000 ha area of Broghil Valley using Landsat 8 data. The composite image was trained using a priori knowledge of the area, and classified into peatland and non-peatland land covers using a supervised decision tree algorithm. The Landsat-based classification map was compared with field data collected with a differential GPS. This comparison suggests 82% overall accuracy, which is fairly high for high altitude areas. The method was successfully applied and has the potential to be replicated for other areas in Pakistan and the highaltitude regions of the neighbouring Asian countries.
文摘Bryophytes dominate northern peatlands. Obtaining reliable measurements of moss-growth and how it may be affected by global changes are therefore important. Several methods have been used to measure moss-growth but it is unclear how comparable they are in different conditions and this uncertainty undermines comparisons among studies. In a field experiment we measured the growth and production of Sphagnum fallax (Sphagnum) and Polytrichum strictum (Polytrichum) using two handling methods, using cut and uncut plants, and three growth-variables, height-growth, length-growth, and mass-growth. We aimed “benchmarking” a combination of six methodological options against exactly the same set of factorial experiments: atmospheric CO2 enrichment and N addition. The two handling methods produced partly different results: in half of the cases, one method revealed a significant treatment effect but the other one did not: significant negative effects on growth were only observed on uncut plants for elevated CO2 and on cut plants for N addition. Furthermore, the correspondence between measurements made with various growth-variables depended on the species and, to a lesser extent, treatments. Sphagnum and Polytrichum growth was inhibited under elevated CO2, and correlated to higher ammonium values. Sphagnum was however less affected than Polytrichum and the height difference between the two species decreased. N addition reduced the P/N ratio and probably induced P-limiting conditions. Sphagnum growth was more inhibited than Polytrichum and the height difference between the two species increased. Our data show that such a problem indeed exists between the cut and uncut handling methods. Not only do the results differ in absolute terms by as much as 82% but also do their comparisons and interpretations depend on the handling method—and thus the interpretation would be biased—in half of the cases. These results call for caution when comparing factorial studies based on different handling methods.
基金financially supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No.XDB40010000)the National Natural Science Foundation of China (Grant Nos.41907288,41673119,and 41773140)+1 种基金the Science and Technology Foundation of Guizhou Province (Grant Nos.[2019]1317 and [2020]1Y193)supported by the“Light of West China”Program and the CAS Scholarship。
文摘Isotopic signature is a powerful tool to discriminate methane(CH_(4)) source types and constrain regional and global scale CH_(4) budgets.Peatlands on the Qinghai-Tibetan Plateau are poorly understood about the isotopic signature of CH_(4) due to the limited experimental conditions.In this study,three campaigns of diurnal air samples spacing 2-3 h were taken from an alpine peatland on the eastern Qinghai-Tibetan Plateau to investigate its source signal characteristics.Both CH_(4) concentration and its stable carbon isotope(δ^(13)C-CH_(4)) were measured to derive the carbon isotopic signature of the CH_(4) source using the Keeling plot technique.Diurnal variation patterns in CH_(4) concentration and δ^(13)C-CH_(4) were observed during summertime,with depleted δ^(13)C-CH_(4) signals and high CH_(4) concentration appearing at nighttime.The δ^(13)C-CH4 signature during summer was calculated to be-71 % ± 1.3%,which falls within the range of other wetland studies and close to high-latitude peatlands.The boundary layer dynamic and CH_(4) source were supposed to influence the measured CH_(4) concentration and δ^(13)C-CH_(4.)Further investigations of CH_(4) isotopic signals into the nongrowing season are still needed to constrain the δ^(13)C-CH_(4) signature and its environmental controls in this region.
基金Scholarships to J.B.were provided by the Natural Sciences and Engineering Research Council of Canada(NSERC-CGS M)the Fonds de recherche du Québec–Nature et technologies(FRQNT)funded by the Natural Sciences and Engineering Research Council of Canada through discovery grants to M.G.andÉB。
文摘Background:Black spruce(Picea mariana(Mill.)BSP)-forested peatlands are widespread ecosystems in boreal North America in which peat accumulation,known as the paludification process,has been shown to induce forest growth decline.The continuously evolving environmental conditions(e.g.,water table rise,increasing peat thickness)in paludified forests may require tree growth mechanism adjustments over time.In this study,we investigate tree ecophysiological mechanisms along a paludification gradient in a boreal forested peatland of eastern Canada by combining peat-based and tree-ring analyses.Carbon and oxygen stable isotopes in tree rings are used to document changes in carbon assimilation rates,stomatal conductance,and water use efficiency.In addition,paleohydrological analyses are performed to evaluate the dynamical ecophysiological adjustments of black spruce trees to site-specific water table variations.Results:Increasing peat accumulation considerably impacts forest growth,but no significant differences in tree water use efficiency(iWUE)are found between the study sites.Tree-ring isotopic analysis indicates no iWUE decrease over the last 100 years,but rather an important increase at each site up to the 1980 s,before iWUE stabilized.Surprisingly,inferred basal area increments do not reflect such trends.Therefore,iWUE variations do not reflect tree ecophysiological adjustments required by changes in growing conditions.Local water table variations induce no changes in ecophysiological mechanisms,but a synchronous shift in iWUE is observed at all sites in the mid-1980 s.Conclusions:Our study shows that paludification induces black spruce growth decline without altering tree water use efficiency in boreal forested peatlands.These findings highlight that failing to account for paludification-related carbon use and allocation could result in the overestimation of aboveground biomass production in paludified sites.Further research on carbon allocation strategies is of utmost importance to understand the carbon sink capacity of these widespread ecosystems in the context of climate change,and to make appropriate forest management decisions in the boreal biome.
文摘Peatland in Southeast Asia has an important function in the provision of ecosystem services such as carbon sink, climate regulation, water supply, biodiversity, and others. Recurrent fires in the peatland, especially in Indonesia, have changed peatland functions from carbon sequestration to carbon emission, causing severe environmental and economic problems. Fire prevention requires an understanding of the factors affecting fire in peatland. We compared fire occurrences in 2014 between different land cover types, land management systems, landholders, and proximity to roads and canals in Riau Province, Indonesia. Remote sensing and field data were collected and analyzed. Shrubland was the most fire-prone land cover, while plantations and mangrove forests were the least. Shrubland has high fire occurrence regardless of land management and landholder type. Peat swamp forests that are allowed to be utilized were more fire-prone than conserved peat swamp forests. Oil palms from unregistered companies had more fires than those from registered companies and smallholders. Coconut and sago plantations from companies had more fires than smallholder cultivation. Proximity to roads and canals affects the occurrence of fires in peat swamp forests;however, proximity had less of an effect on fire occurrence in shrubland. The high percentage of burned areas in shrubland showed that land cover was a major factor that affects fire in peatland, followed by land management, landholders, and proximity to roads and canals. These findings indicate the importance of law enforcement and land management systems, management schemes by different landholders, and the spatial arrangement of land cover, roads, and canals for integrated peatland management and restoration of shrubland into peat swamp forest and other fire-resistant land cover types with sustainable production.
文摘Cerro Tocorpuri, belongs to the II region of Chile, in San Pedro de Atacama, on the border of Chile-Bolivia. The presence of a more or less constant supply of water conditions the existence of characteristic vegetation systems known as bogs (bofedales, vegas and marshes). These wetlands have a cultural, environmental and economic social importance. As a result of the exploitation of aquatic rights, peatlands began to dry up with the consequent loss of natural resources and damage to ancestral rights, and natural resources. The activities of microorganisms in wetlands play an important role in biogeochemical processes. The interaction between microbial diversity and soil, influences to the ability of the ecosystem to recover from stress (resilience). In the present work, the soil characteristics and the associated microbial biodiversity were studied, comparing samples of active and deteriorated peatland. It was seen that the loss of water causes great changes in the physical-chemical characteristics of the soil, which leads to a modification of the microbiota Proteobacteria decreased by 18% in deteriorated peatlands, which are evident more sensible to extreme conditions while Acidobacteria, Actinobacteria increased in these sample showing a better adaptation to the change of conditions. In view of the fact that high Andean Peatlands are exposed to increasing environmental impact, this preliminary comparative study of pristine and altered soil could guide the research directed to recovery of dead peatlands strategies.
文摘Peatlands represent one of the most important economic resources and abandoned peatlands after mining can be considered as ecological resources by re-vegetation restoration or management. However, some environmental problems like particles from peatlands and their effects in the water system have to be characterized. Since centuries, artificial drainage has been a current practice for the mining of peatlands. Mainly mined for horticultural purpose, New Brunswick's peatlands--predominantly located in the eastern of the province--cover about 140,000 ha. At the downstream end of the drainage system, the water from peatlands flow into sedimentation basins. Drainage waters are often laden with solid particles. Once they have flowed through the ponds to allow sediment settling, the water is released into the water system. This paper describes the spatio-temporal evolution of suspended solids from 12 New Brunswick drained peatlands. The studied sites were characterized by some heterogeneity in the concentration of suspended solids. This study also provides knowledge on the suspended solids amount that can be released by drained peatlands, and it proposes a function to estimate the concentration of suspended solids by using climate variables; and identifies some potential ecological risks.
文摘Peatland ecosystems play an important role in the global carbon cycle because they act as a pool or sink for the carbon cycle. However, the relationship between seasonality effect factors and net ecosystem CO<sub>2</sub> exchange (NEE) remains to be clarified, particularly for the non-growing season. Here, based on the eddy covariance technique, NEE in the peatland ecosystem of Central China was examined to measure two years’ (2016 and 2017) accumulation of carbon dioxide emissions with contrasting seasonal distribution of environmental factors. Our results demonstrate the cumulative net ecosystem CO<sub>2</sub> emissions during the study period was in the first non-growing season 2.94 ± 4.83 μmolCO<sub>2</sub> m<sup><span style="color:#4F4F4F;font-family:" font-size:14px;white-space:normal;background-color:#ffffff;"="">-</span>2<span style="white-space:nowrap;">.</span></sup>s<sup><span style="color:#4F4F4F;font-family:" font-size:14px;white-space:normal;background-color:#ffffff;"="">-</span>1</sup> with the lowest values in the same year in first growing season was <span style="color:#4F4F4F;font-family:" font-size:14px;white-space:normal;background-color:#ffffff;"="">-</span>2.79 ± 4.92 μmolCO<sub>2</sub> m<sup><span style="color:#4F4F4F;font-family:" font-size:14px;white-space:normal;background-color:#ffffff;"="">-</span>2</sup><span style="font-family:" font-size:13.3333px;white-space:normal;"=""><span style="white-space:nowrap;"><sup>.</sup></span></span>s<sup><span style="color:#4F4F4F;font-family:" font-size:14px;white-space:normal;background-color:#ffffff;"="">-</span>1</sup>. The results indicate the effect of seasonal variations of NEE can be directly reflected in daily and seasonal variations in growth and respiration of peatland ecosystem by environmental parameters over different growing stages.
文摘As a result of several decades of peat extraction, the area of cutaway peatlands in Finland totals ca. 50,000 ha. Furthermore, some 2000 - 3000 ha of peatlands are abandoned annually from active peat extraction. Forestry is considered to be their main after-use option. However, since cutaway peat is generally rich in nitrogen, but poor in phosphorus and potassium, soil amelioration measures are needed for successful vegetation and afforestation. Soil preparations bringing mineral soil into peat surface or recycling of ash containing P and K are alternative ways for soil amelioration. We studied the initial effects of soil preparation and ash fertilization on soil CO<sub>2</sub>-effluxes and colonisation of cutaway peat by vegetation. Oppositely to the previous studies, this study shows that carbon released from the residual peat may be so high that the ash-fertilized cutaway peatlands still act as sources of carbon even after afforestation. However, even though the CO<sub>2</sub>-effluxes following ash fertilization or soil preparation may occasionally exceed the carbon sequestration into growing tree stands, afforestation mostly compensates the CO<sub>2</sub>-effluxes if also we take into consideration the below-ground biomass. In conclusion, our study shows that although ash fertilization enhances the CO<sub>2</sub>-effluxes into the atmosphere, it has beneficial effects on the environment by enabling rapid colonisation of vegetation on these sites which would remain vegetationless for decades without soil amelioration.
基金partly funded by the forest brook restoration project led by the North Ostrobothnia Regional Environment Centre in Finlandsupport from KIRSU graduate school(Academy of Finland),Tor and Maj Nessling foundation,MVTT,Thule-institute at University of Oulu,Mod-Stream project by Academy of Finland and the Ministry of Agriculture and Forestry.
文摘Peatland drainage can affect headwater systems, causing changes in bed substrate composition and hydraulic geome-try in small brooks. We studied hydraulic geometry and sediment properties in 14 boreal forest brook reaches (width < 2 m), characterised by well-vegetated banks, high sinuosity and low width-to-depth ratio, in north-east Finland. The aims were to obtain information from channel geometry and to study brook response to extensive sediment load from land use. The results indicate that bed sediment in brooks is almost continuously mobile, which negatively reflect to ecological status of the brooks. These headwater meandering parts have limited sediment transport capacity and require a long period to recover from artificially increased sediment input from peat drainage. However, different reaches can be prioritised for restoration according to the characteristics of silted bed sediment or sediment origins. Brook width appeared to have large natural variation, causing great local velocity variations. This needs to be taken into consideration when restoring straightened reaches in small headwater areas, e.g., width in restored reaches cannot be uniform but should include variations.
基金financially supported by the National Natural Science Foundation of China(Grant No.41072023)
文摘The humification degree of peat is a significant climatic proxy for paleoclimate change.Using the alkali-extraction method,a time series of absorbance values of the Hani peatland,Northeast China,was determined,which is used as an indicator for the humification degree of peat.Combined with14C dating data of peat cellulose,and compared withδ18O andδ13C time series of the cellulose in the Hani peatland,the evidence for the existence of14 ka paleoclimate was provided.Higher humification degrees hint a warmer-wetter climate,and vice versa.It also reconstructs the four stages of Holocene climate evolution in this region:11.5–9.8 cal ka B.P.,warm and wet period;9.8–9.0 cal ka B.P.,cold and dry period;9.0–4.8 cal ka B.P.,warm and wet period;and 4.8–0 cal ka B.P.,warm-wet and dry-cold alternation period.Meanwhile,it is revealed that the abrupt climate shifts signals such as the "8.2 ka" event and the "4.2 ka" event.Results showed that the Hani peat humification degree is of sensitive response to paleoclimate change.Therefore,it is a feasible method to analyze the relationship between paleoclimate change and peat humification degree.