This paper is concerned with the existence of adaptive generalized synchronization(GS) of two chaotic systems.An adaptive control is designed based on a Lyapunov approach.By using modified system approach,some suffici...This paper is concerned with the existence of adaptive generalized synchronization(GS) of two chaotic systems.An adaptive control is designed based on a Lyapunov approach.By using modified system approach,some sufficient conditions for the existence of first two types of adaptive GS inertial manifolds are established.Finally,some numerical simulations are provided to illustrate the theoretical results.展开更多
We present a generalized analytical solution to the normalized state equations of a class of coupled simple secondorder non-autonomous circuit systems. The analytical solutions thus obtained are used to study the sync...We present a generalized analytical solution to the normalized state equations of a class of coupled simple secondorder non-autonomous circuit systems. The analytical solutions thus obtained are used to study the synchronization dynamics of two different types of circuit systems, differing only by their constituting nonlinear element. The synchronization dynamics of the coupled systems is studied through two-parameter bifurcation diagrams, phase portraits, and time-series plots obtained from the explicit analytical solutions. Experimental figures are presented to substantiate the analytical results. The generalization of the analytical solution for other types of coupled simple chaotic systems is discussed. The synchronization dynamics of the coupled chaotic systems studied through two-parameter bifurcation diagrams obtained from the explicit analytical solutions is reported for the first time.展开更多
文摘This paper is concerned with the existence of adaptive generalized synchronization(GS) of two chaotic systems.An adaptive control is designed based on a Lyapunov approach.By using modified system approach,some sufficient conditions for the existence of first two types of adaptive GS inertial manifolds are established.Finally,some numerical simulations are provided to illustrate the theoretical results.
文摘We present a generalized analytical solution to the normalized state equations of a class of coupled simple secondorder non-autonomous circuit systems. The analytical solutions thus obtained are used to study the synchronization dynamics of two different types of circuit systems, differing only by their constituting nonlinear element. The synchronization dynamics of the coupled systems is studied through two-parameter bifurcation diagrams, phase portraits, and time-series plots obtained from the explicit analytical solutions. Experimental figures are presented to substantiate the analytical results. The generalization of the analytical solution for other types of coupled simple chaotic systems is discussed. The synchronization dynamics of the coupled chaotic systems studied through two-parameter bifurcation diagrams obtained from the explicit analytical solutions is reported for the first time.