期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Soil Organic Carbon Density in Hebei Province, China: Estimates and Uncertainty 被引量:18
1
作者 ZHAOYong-Cun SHIXue-Zheng +3 位作者 YUDong-Sheng T.F.PAGELLA SUNWei-Xia XUXiang-Hua 《Pedosphere》 SCIE CAS CSCD 2005年第3期293-300,共8页
In order to improve the precision of soil organic carbon (SOC) estimates, the sources of uncertainty in soil organic carbon density (SOCD) estimates and SOC stocks were examined using 363 soil profiles in Hebei Provin... In order to improve the precision of soil organic carbon (SOC) estimates, the sources of uncertainty in soil organic carbon density (SOCD) estimates and SOC stocks were examined using 363 soil profiles in Hebei Province, China, with three methods: the soil profile statistics (SPS), GIS-based soil type (GST), and kriging interpolation (KI). The GST method, utilizing both pedological professional knowledge and GIS technology, was considered the most accurate method of the three estimations, with SOCD estimates for SPS 10% lower and KI 10% higher. The SOCD range for GST was 84% wider than KI as KI smoothing effect narrowed the SOCD range. Nevertheless, the coefficient of variation for SOCD with KI (41.7%) was less than GST and SPS. Comparing SOCD’s lower estimates for SPS versus GST, the major sources of uncertainty were the conflicting area of proportional relations. Meanwhile, the fewer number of soil profiles and the necessity of using the smoothing effect with KI were its sources of uncertainty. Moreover, for local detailed variations of SOCD, GST was more advantageous in reflecting the distribution pattern than KI. 展开更多
关键词 professional pedological knowledge-based database (PKD) soil organic carbon (SOC) soil profile database (SPD) soil profile statistics (SPS) UNCERTAINTY
下载PDF
Estimates of Soil Organic Carbon Stocks in Zhejiang Province of China Based on 1:50000 Soil Database Using the PKB Method 被引量:2
2
作者 ZHI Jun-Jun JING Chang-Wei +2 位作者 LIN Sheng-Pan ZHANG Cao WU Jia-Ping 《Pedosphere》 SCIE CAS CSCD 2015年第1期12-24,共13页
Soil organic carbon(SOC) is an important component of farming systems and global carbon cycle. Accurately estimating SOC stock is of great importance for assessing soil productivity and modeling global climate change.... Soil organic carbon(SOC) is an important component of farming systems and global carbon cycle. Accurately estimating SOC stock is of great importance for assessing soil productivity and modeling global climate change. A newly built 1:50 000 soil database of Zhejiang Province containing 2 154 geo-referenced soil profiles and a pedological professional knowledge-based(PKB) method were used to estimate SOC stock up to a depth of 100 cm for the Province. The spatial patterns of SOC stocks stratified by soil types,watershed(buffer analysis), topographical factors, and land use types were identified. Results showed that the soils in Zhejiang covered an area of 100 740 km2 with a total SOC stock of 831.49 × 106 t and a mean SOC density of 8.25 kg m-2, excluding water and urban areas. In terms of soil types, red soils had the highest SOC stock(259.10 × 106t), whereas mountain meadow soils contained the lowest(0.15 × 106t). In terms of SOC densities, the lowest value(5.11 kg m-2) was found in skel soils, whereas the highest value(45.30 kg m-2) was observed in mountain meadow soils. Yellow soils, as a dominant soil group, determined the SOC densities of different buffer zones in Qiantang River watershed because of their large area percentage and wide variation of SOC density values.The area percentages of various soil groups significantly varied with increasing elevation or slope when overlaid with digital elevation model data, thus influencing the SOC densities. The highest SOC density was observed under grassland, whereas the lowest SOC density was identified under unutilized land. The map of SOC density(0–100 cm depth) and the spatial patterns of SOC stocks in the Province would be helpful for relevant agencies and communities in Zhejiang Province, China. 展开更多
关键词 ELEVATION pedological professional knowledge-based method sampling depth SLOPE SOC density soil groups
原文传递
海伦市耕层土壤有机质含量空间预测方法研究 被引量:9
3
作者 陆访仪 赵永存 +1 位作者 黄标 汪景宽 《土壤通报》 CAS CSCD 北大核心 2012年第3期662-667,共6页
有机质含量是表征土壤肥力质量的重要属性,其空间分布模式对于施肥等耕作管理措施的推荐具有重要的指导意义。本文以我国黑土区黑龙江省海伦市为研究区域,在土壤采样点数量较有限的情况下,分别采用普通克里格、反距离权重、遥感反演和... 有机质含量是表征土壤肥力质量的重要属性,其空间分布模式对于施肥等耕作管理措施的推荐具有重要的指导意义。本文以我国黑土区黑龙江省海伦市为研究区域,在土壤采样点数量较有限的情况下,分别采用普通克里格、反距离权重、遥感反演和基于土壤学专业知识四种方法对耕层土壤有机质含量进行了空间预测。结果表明:四种方法表征的海伦耕地土壤有机质含量空间分布特征具有相似性,即由东北向西南方向递减。空间预测精度从高到低依次为反距离权重、普通克里格、基于土壤学专业知识和遥感反演法;而在有机质的局部变异细节表达方面,从高到低为遥感反演、基于土壤学专业知识、反距离权重和普通克里格法。四种方法中仅遥感反演法预测结果的极差范围较宽,普通克里格法则存在明显的平滑效应,而综合比较结果则表明,最合适的方法是基于土壤学专业知识的方法。 展开更多
关键词 海伦市 有机质 普通克里格 反距离权重 遥感反演 基于土壤学专业知识
原文传递
土壤有机碳储量估算与土地利用的关系研究 被引量:2
4
作者 陈粲 雷学成 罗桑扎西 《土壤通报》 CAS CSCD 北大核心 2013年第1期42-45,共4页
土地利用方式的变化在土壤有机碳(Soil Organic Carbon,SOC)积累的过程中起着非常重要的作用。目前在估算土壤有机碳储量的过程中,一直没有重视土地利用属性。运用基于土壤学专业知识的连接方法 (pedological professional knowledge-ba... 土地利用方式的变化在土壤有机碳(Soil Organic Carbon,SOC)积累的过程中起着非常重要的作用。目前在估算土壤有机碳储量的过程中,一直没有重视土地利用属性。运用基于土壤学专业知识的连接方法 (pedological professional knowledge-based method,PKB法),结合江苏省新沂县1∶20万土壤图,1∶20万土地利用图和1∶20万土壤类型土地利用混合图,估算了各图在不同土壤剖面点数情况下的新沂县SOC储量,并将三者在最佳剖面点数下估算出的SOC储量和SOC密度(SOCD)进行了比较及精度评价。结果表明:在土壤类型图、土地利用图和土壤类型土地利用混合图上进行的PKB法连接时最佳剖面点数均为397点,最佳网格为2 km×2 km;在中比例尺图件上进行PKB法连接估算SOC储量时,综合考虑土壤类型和土地利用类型可以大大提高估算精度,同时土地利用类型属性比土壤类型属性更为重要。研究结果可为在中比例尺条件下提高SOC估算精度提供科学依据。 展开更多
关键词 土地利用类型 有机碳储量估算 基于土壤学专业知识的连接方法
原文传递
水稻土有机碳密度的空间预测分析--以浙江省长兴县为例 被引量:5
5
作者 刘莎 任红艳 +2 位作者 史学正 潘剑君 王洪杰 《地球信息科学学报》 CSCD 北大核心 2010年第2期180-185,共6页
准确预测未采样区域SOC密度,是研究SOC演变趋势和探索土壤固碳作用对缓解全球气候变化的基础。采用泛克里格法(Universal Kriging,UK)和土壤类型法(pedological professional knowledge-based method,PKB),分别对长兴县水稻土有机碳密... 准确预测未采样区域SOC密度,是研究SOC演变趋势和探索土壤固碳作用对缓解全球气候变化的基础。采用泛克里格法(Universal Kriging,UK)和土壤类型法(pedological professional knowledge-based method,PKB),分别对长兴县水稻土有机碳密度进行了预测,其中,UK直接以长兴水稻土剖面资料为源数据、PKB以长兴水稻土剖面数据和长兴1∶5万数字土壤图为源数据进行预测。根据平均绝对误差(MAE)及均方根误差(RMSE)大小,评价了两种方法在县域尺度土壤有机碳密度空间预测效果。结果表明:UK的MAE(31.2)、RMSE(52.5)均大于PKB的MAE(24.7)、RMSE(43.1),说明PKB法的预测效果较好,UK法相对较差。研究表明,对土壤类型、土壤母质,以及剖面点位置等信息的综合考虑能使PKB法更好地表达土壤属性的空间特征,也更适于县域尺度土壤有机碳密度的空间预测。 展开更多
关键词 长兴县 水稻土 有机碳密度 普通克里格 土壤类型法
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部