To improve the flame-retardant efficiency and water resistance of ammonium polyphosphate(APP), the UV-curable pentaerythritol triacrylate(PETA) was used to microencapsulate APP via the UV curing polymerization met...To improve the flame-retardant efficiency and water resistance of ammonium polyphosphate(APP), the UV-curable pentaerythritol triacrylate(PETA) was used to microencapsulate APP via the UV curing polymerization method. The prepared PETA-microencapsulated APP(PETA-APP) was characterized by Fourier transform infrared spectroscopy(FTIR), scanning electron microscopy(SEM), and thermogravimetric(TG) analysis. PETA-APP was used as intumescent flame retardant(IFR) alone to flame retard polypropylene(PP). The water resistance of PP/PETA-APP composites was investigated, and the effect of PETA on the combustion behaviors of PP/APP composites was studied through limiting oxygen index(LOI), vertical burning test(UL-94) and cone calorimeter(CC) test, respectively. With 40 wt% of PETA-APP, the PP/PETA-APP system could achieve a LOI value of 30.0% and UL-94 V-0 rating after treatment in hot water for 168 h, while the LOI value of the system containing 40 wt% uncoated APP was only 19.2%, and it failed to pass the UL-94 rating. CC test results showed that the heat release rate(HRR), mass loss rate(MLR) and smoke production rate(SPR) of PP/PETAAPP system decreased significantly compared with PP/APP system, especially the peak of HRR was decreased by 51.4%. The mechanism for the improvement of flame reatardancy for PP/PETA-APP composites was discussed based on FTIR and X-ray photoelectron spectroscopy(XPS) tests. All these results illustrated that simultaneous improvement of flame retardancy and water resistance for PP/APP was achieved through coating UV-curable PETA onto APP.展开更多
Pentaerythritol triacrylate (PETA) was successfully grafted onto the plasma-treated isotactic polypropylene (iPP) via the in situ melt processing. The X-ray photoelectron spectroscopy (XPS) results showed that t...Pentaerythritol triacrylate (PETA) was successfully grafted onto the plasma-treated isotactic polypropylene (iPP) via the in situ melt processing. The X-ray photoelectron spectroscopy (XPS) results showed that the hydroxyl and carbonyl groups, and peroxides could be generated via plasma treatment. The content of free radical in plasma-treated iPP (PiPP) was measured by 2,2-diphenyl-1- picrylhydrazyl (DPPH). It was found that the resulting peroxides induced the grafting copolymerization of PETA onto iPP, and the grafted PETA promoted the formation of β-crystal in PiPP, which was evidenced by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD) measurements, respectively.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.50933005,51121001)the Program for Changjiang Scholars and Innovative Research Team in Universities(IRT1026)
文摘To improve the flame-retardant efficiency and water resistance of ammonium polyphosphate(APP), the UV-curable pentaerythritol triacrylate(PETA) was used to microencapsulate APP via the UV curing polymerization method. The prepared PETA-microencapsulated APP(PETA-APP) was characterized by Fourier transform infrared spectroscopy(FTIR), scanning electron microscopy(SEM), and thermogravimetric(TG) analysis. PETA-APP was used as intumescent flame retardant(IFR) alone to flame retard polypropylene(PP). The water resistance of PP/PETA-APP composites was investigated, and the effect of PETA on the combustion behaviors of PP/APP composites was studied through limiting oxygen index(LOI), vertical burning test(UL-94) and cone calorimeter(CC) test, respectively. With 40 wt% of PETA-APP, the PP/PETA-APP system could achieve a LOI value of 30.0% and UL-94 V-0 rating after treatment in hot water for 168 h, while the LOI value of the system containing 40 wt% uncoated APP was only 19.2%, and it failed to pass the UL-94 rating. CC test results showed that the heat release rate(HRR), mass loss rate(MLR) and smoke production rate(SPR) of PP/PETAAPP system decreased significantly compared with PP/APP system, especially the peak of HRR was decreased by 51.4%. The mechanism for the improvement of flame reatardancy for PP/PETA-APP composites was discussed based on FTIR and X-ray photoelectron spectroscopy(XPS) tests. All these results illustrated that simultaneous improvement of flame retardancy and water resistance for PP/APP was achieved through coating UV-curable PETA onto APP.
基金financially supported by the National Natural Science Foundation of China (No.51473113)the Natural Science Foundation of Tianjin (No.12JCYBJC11900)
文摘Pentaerythritol triacrylate (PETA) was successfully grafted onto the plasma-treated isotactic polypropylene (iPP) via the in situ melt processing. The X-ray photoelectron spectroscopy (XPS) results showed that the hydroxyl and carbonyl groups, and peroxides could be generated via plasma treatment. The content of free radical in plasma-treated iPP (PiPP) was measured by 2,2-diphenyl-1- picrylhydrazyl (DPPH). It was found that the resulting peroxides induced the grafting copolymerization of PETA onto iPP, and the grafted PETA promoted the formation of β-crystal in PiPP, which was evidenced by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD) measurements, respectively.