Conserved dopamine neurotrophic factor protects and rescues dopaminergic neurodegeneration induced by 6-hydroxydopamine in vivo,but its potential value in treating Parkinson's disease remains controversial.Here,we us...Conserved dopamine neurotrophic factor protects and rescues dopaminergic neurodegeneration induced by 6-hydroxydopamine in vivo,but its potential value in treating Parkinson's disease remains controversial.Here,we used the proteasome inhibitors lactacystin and MG132 to induce neurodegeneration of PC12 cells.Afterwards,conserved dopamine neurotrophic factor was administrated as a therapeutic factor,both pretreatment and posttreatment.Our results showed that(1)conserved dopamine neurotrophic factor enhanced lactacystin/MG132-induced cell viability and morphology,and attenuated alpha-synuclein accumulation in differentiated PC12 cells.(2)Enzyme linked immunosorbent assay showed up-regulated 26S proteasomal activity in MG132-induced PC12 cells after pre-and posttreatment with conserved dopamine neurotrophic factor.Similarly,26S proteasome activity was upregulated in lactacystin-induced PC12 cells pretreated with conserved dopamine neurotrophic factor.(3)With regard proteolytic enzymes(specifically,glutamyl peptide hydrolase,chymotrypsin,and trypsin),glutamyl peptide hydrolase activity was up-regulated in lactacystin/MG132-administered PC12 cells after pre-and posttreatment with conserved dopamine neurotrophic factor.However,upregulation of chymotrypsin activity was only observed in MG132-administered PC12 cells pretreated with conserved dopamine neurotrophic factor.There was no change in trypsin expression.We conclude that conserved dopamine neurotrophic factor develops its neurotrophic effects by modulating proteasomal activities,and thereby protects and rescues PC12 cells against neurodegeneration.展开更多
Background Hyaluronidase (Hyase) is an enzyme which hydrolyses hyaluronan (HA), a large nonsulfated glycosaminoglycan. Several genes have been identified to code for hyaluronidases in humans. Its role has only rec...Background Hyaluronidase (Hyase) is an enzyme which hydrolyses hyaluronan (HA), a large nonsulfated glycosaminoglycan. Several genes have been identified to code for hyaluronidases in humans. Its role has only recently been underlined in the invasion of prostate cancer, colonic cancer, and breast cancer. Moreover, the findings were in agreement with some experimental results which showed that HA-derived oligosaccharides had angiogenesis-promoting activity. All these findings prompted us to investigate factors that had been characterized as putative invasive factors in different human breast cancer-derived cell lines. Methods We selected two series of human breast cancer-derived cell lines whose expression of estrogen receptors (ER) was previously published. Hyaluronidase secretion in culture medium and expression of matrix metallo-proteinase (MMP)-9, cathepsin-D (cath-D) and vascular endothelial growth factor (VEGF) by cells were determined. We also investigated cell invasiveness in the Matrigel invasion assay, and studied the capability of cancer cells to promote in vitro formation of tubules by endothelial cells. Results ER(-) cells secreted significantly more hyaluronidase (P 〈0.001) and expressed significantly more VEGF (P 〈0.01), MMP-9 (P 〈0.05) and cath-D (P 〈0.0001) than ER(+) cells. Invasion through Matrigel by ER(-) Hyase(+) cells was significantly higher than that by ER(+) Hyase(-) cells (P 〈0.05). In both cases, invasion was decreased by heparin (P 〈0.05). When ECV-304 endothelial cells were co-cultivated in millicell chambers with cancer cells, ECV-304 cells were induced to form tubules. Tubule formation was demonstrated to be more prominent with ER(-) Hyase(+) cells than with ER(+) Hyase(-) cells (P 〈0.05). Conclusion Invasive features of ER(-) breast cancer cells can be characterized in vitro by an invasive Matrigel assay, as the induction of tubule formation by ECV-304 endothelial cells, higher secretion of hyaluronidase, and higher expression of proteinases MMP-9, cath-D, and the angiogenesis promoting factor VEGF.展开更多
Objective: To examine whether pancreatic proteolytic enzymes involve in lung injury induced by trauma/hemorrhagic shock (T/HS). Methods: Male Sprague Dawley rats received intraluminal or intravenous pancreatic serine ...Objective: To examine whether pancreatic proteolytic enzymes involve in lung injury induced by trauma/hemorrhagic shock (T/HS). Methods: Male Sprague Dawley rats received intraluminal or intravenous pancreatic serine protease inhibitor, 6 amidino 2 naphthyl p guanidinobenzoate dimethanesulfate (ANGD) during laparotomy (trauma), and were subjected to 90 minutes of T/HS or trauma sham shock (T/SS). Degree of lung injury was assessed 3 hours after resuscitation with Ringer’s lactate solution. Results: Lung permeability, pulmonary myeloperoxidase levels and the ratio of bronchoalveolar lavage fluid protein to plasma protein increased after T/HS, and significantly decreased in intraluminal ANGD treated but not in intravenous ANGD treated rats. Histological analysis demonstrated fewer injured villi in the intraluminal ANGD treated rats compared with those in the control rats. Linear regression analysis revealed that the percentage of injured ileal mucosal villi directly related to pulmonary polymorphic neutrophil sequestration and lung permeability to Evans blue dye. Conclusions: Pancreatic proteolytic enzymes in the ischemic gut may be important toxic factors contributing to lung injury after T/HS.展开更多
基金supported by the Natural Science Foundation of Anhui Province of China,No.11040606Q11the National Natural Science Foundation of China,No.81100960
文摘Conserved dopamine neurotrophic factor protects and rescues dopaminergic neurodegeneration induced by 6-hydroxydopamine in vivo,but its potential value in treating Parkinson's disease remains controversial.Here,we used the proteasome inhibitors lactacystin and MG132 to induce neurodegeneration of PC12 cells.Afterwards,conserved dopamine neurotrophic factor was administrated as a therapeutic factor,both pretreatment and posttreatment.Our results showed that(1)conserved dopamine neurotrophic factor enhanced lactacystin/MG132-induced cell viability and morphology,and attenuated alpha-synuclein accumulation in differentiated PC12 cells.(2)Enzyme linked immunosorbent assay showed up-regulated 26S proteasomal activity in MG132-induced PC12 cells after pre-and posttreatment with conserved dopamine neurotrophic factor.Similarly,26S proteasome activity was upregulated in lactacystin-induced PC12 cells pretreated with conserved dopamine neurotrophic factor.(3)With regard proteolytic enzymes(specifically,glutamyl peptide hydrolase,chymotrypsin,and trypsin),glutamyl peptide hydrolase activity was up-regulated in lactacystin/MG132-administered PC12 cells after pre-and posttreatment with conserved dopamine neurotrophic factor.However,upregulation of chymotrypsin activity was only observed in MG132-administered PC12 cells pretreated with conserved dopamine neurotrophic factor.There was no change in trypsin expression.We conclude that conserved dopamine neurotrophic factor develops its neurotrophic effects by modulating proteasomal activities,and thereby protects and rescues PC12 cells against neurodegeneration.
文摘Background Hyaluronidase (Hyase) is an enzyme which hydrolyses hyaluronan (HA), a large nonsulfated glycosaminoglycan. Several genes have been identified to code for hyaluronidases in humans. Its role has only recently been underlined in the invasion of prostate cancer, colonic cancer, and breast cancer. Moreover, the findings were in agreement with some experimental results which showed that HA-derived oligosaccharides had angiogenesis-promoting activity. All these findings prompted us to investigate factors that had been characterized as putative invasive factors in different human breast cancer-derived cell lines. Methods We selected two series of human breast cancer-derived cell lines whose expression of estrogen receptors (ER) was previously published. Hyaluronidase secretion in culture medium and expression of matrix metallo-proteinase (MMP)-9, cathepsin-D (cath-D) and vascular endothelial growth factor (VEGF) by cells were determined. We also investigated cell invasiveness in the Matrigel invasion assay, and studied the capability of cancer cells to promote in vitro formation of tubules by endothelial cells. Results ER(-) cells secreted significantly more hyaluronidase (P 〈0.001) and expressed significantly more VEGF (P 〈0.01), MMP-9 (P 〈0.05) and cath-D (P 〈0.0001) than ER(+) cells. Invasion through Matrigel by ER(-) Hyase(+) cells was significantly higher than that by ER(+) Hyase(-) cells (P 〈0.05). In both cases, invasion was decreased by heparin (P 〈0.05). When ECV-304 endothelial cells were co-cultivated in millicell chambers with cancer cells, ECV-304 cells were induced to form tubules. Tubule formation was demonstrated to be more prominent with ER(-) Hyase(+) cells than with ER(+) Hyase(-) cells (P 〈0.05). Conclusion Invasive features of ER(-) breast cancer cells can be characterized in vitro by an invasive Matrigel assay, as the induction of tubule formation by ECV-304 endothelial cells, higher secretion of hyaluronidase, and higher expression of proteinases MMP-9, cath-D, and the angiogenesis promoting factor VEGF.
文摘Objective: To examine whether pancreatic proteolytic enzymes involve in lung injury induced by trauma/hemorrhagic shock (T/HS). Methods: Male Sprague Dawley rats received intraluminal or intravenous pancreatic serine protease inhibitor, 6 amidino 2 naphthyl p guanidinobenzoate dimethanesulfate (ANGD) during laparotomy (trauma), and were subjected to 90 minutes of T/HS or trauma sham shock (T/SS). Degree of lung injury was assessed 3 hours after resuscitation with Ringer’s lactate solution. Results: Lung permeability, pulmonary myeloperoxidase levels and the ratio of bronchoalveolar lavage fluid protein to plasma protein increased after T/HS, and significantly decreased in intraluminal ANGD treated but not in intravenous ANGD treated rats. Histological analysis demonstrated fewer injured villi in the intraluminal ANGD treated rats compared with those in the control rats. Linear regression analysis revealed that the percentage of injured ileal mucosal villi directly related to pulmonary polymorphic neutrophil sequestration and lung permeability to Evans blue dye. Conclusions: Pancreatic proteolytic enzymes in the ischemic gut may be important toxic factors contributing to lung injury after T/HS.