In this paper,the concept of the infinitesimal realization factor is extended to the parameter dependent performance functions in closed queueing networks.Then the concepts of realization matrix (its elements are cal...In this paper,the concept of the infinitesimal realization factor is extended to the parameter dependent performance functions in closed queueing networks.Then the concepts of realization matrix (its elements are called realization factors) and performance potential are introduced,and the relations between infinitesimal realization factors and these two quantities are discussed.This provides a united framework for both IPA and non IPA approaches.Finally,another physical meaning of the service rate is given.展开更多
Model performance assessment is a key procedure for mineral potential mapping, but the correspond-ing research achievements are seldom reported in literature. Cumulative gain and lift charts are well known in the data...Model performance assessment is a key procedure for mineral potential mapping, but the correspond-ing research achievements are seldom reported in literature. Cumulative gain and lift charts are well known in the data mining community specialized in marketing and sales applications and widely used in customer chum prediction for model performance assessment. In this paper, they are introduced into the field of mineral poten-tial mapping for model performance assessment. These two charts can be viewed as a graphic representation of the advantage of using a predictive model to choose mineral targets. A cumulative gain curve can represent how much a predictive model is superior to a random guess in mineral target prediction. A lift chart can express how much more likely the mineral targets predicted by a model are deposit-bearing ones than those by a random se-lection. As an illustration, the cumulative gain and lift charts are applied to measure the performance of weights of evidence, logistic regression,restricted Boltzmann machine, and multilayer perceptron in mineral potential mapping in the Altay district in northern Xinjiang in China. The results show that the cumulative gain and lift charts can visually reveal that the first three models perform well while the last one performs poorly. Thus, the cumulative gain and lift charts can serve as a graphic tool for model performance assessment in mineral potential mapping.展开更多
An objective visual performance evaluation with visual evoked potential (VEP) measurements was first inte- grated into an adaptive optics (AO) system. The optical and neural limits to vision can be bypassed throug...An objective visual performance evaluation with visual evoked potential (VEP) measurements was first inte- grated into an adaptive optics (AO) system. The optical and neural limits to vision can be bypassed through this system. Visual performance can be measured electrophysiologically with VEP, which reflects the objective func- tion from the retina to the primary visual cortex. The VEP ts without and with AO correction were preliminarily carried out using this system, demonstrating the great potential of this system in the objective visual performance evaluation. The new system will provide the necessary technique and equipment support for the further study of human visual function.展开更多
基金the National Natural Science Foundation of China(699740 37) the National HighPerformance Computing Foundation of China (0 0 2 12 )
文摘In this paper,the concept of the infinitesimal realization factor is extended to the parameter dependent performance functions in closed queueing networks.Then the concepts of realization matrix (its elements are called realization factors) and performance potential are introduced,and the relations between infinitesimal realization factors and these two quantities are discussed.This provides a united framework for both IPA and non IPA approaches.Finally,another physical meaning of the service rate is given.
基金Supported by Project of the National Natural Science Foundation of China(Nos.41272360,41472299,61133011)
文摘Model performance assessment is a key procedure for mineral potential mapping, but the correspond-ing research achievements are seldom reported in literature. Cumulative gain and lift charts are well known in the data mining community specialized in marketing and sales applications and widely used in customer chum prediction for model performance assessment. In this paper, they are introduced into the field of mineral poten-tial mapping for model performance assessment. These two charts can be viewed as a graphic representation of the advantage of using a predictive model to choose mineral targets. A cumulative gain curve can represent how much a predictive model is superior to a random guess in mineral target prediction. A lift chart can express how much more likely the mineral targets predicted by a model are deposit-bearing ones than those by a random se-lection. As an illustration, the cumulative gain and lift charts are applied to measure the performance of weights of evidence, logistic regression,restricted Boltzmann machine, and multilayer perceptron in mineral potential mapping in the Altay district in northern Xinjiang in China. The results show that the cumulative gain and lift charts can visually reveal that the first three models perform well while the last one performs poorly. Thus, the cumulative gain and lift charts can serve as a graphic tool for model performance assessment in mineral potential mapping.
基金supported by the National Natural Science Foundation of China (No. 61378064)the National High Technology Research and Development Program of China (No. 2015AA020510)
文摘An objective visual performance evaluation with visual evoked potential (VEP) measurements was first inte- grated into an adaptive optics (AO) system. The optical and neural limits to vision can be bypassed through this system. Visual performance can be measured electrophysiologically with VEP, which reflects the objective func- tion from the retina to the primary visual cortex. The VEP ts without and with AO correction were preliminarily carried out using this system, demonstrating the great potential of this system in the objective visual performance evaluation. The new system will provide the necessary technique and equipment support for the further study of human visual function.