Cellulose-derived carbon is regarded as one of the most promising candidates for high-performance anode materials in sodium-ion batteries;however,its poor rate performance at higher current density remains a challenge...Cellulose-derived carbon is regarded as one of the most promising candidates for high-performance anode materials in sodium-ion batteries;however,its poor rate performance at higher current density remains a challenge to achieve high power density sodium-ion batteries.The present review comprehensively elucidates the structural characteristics of cellulose-based materials and cellulose-derived carbon materials,explores the limitations in enhancing rate performance arising from ion diffusion and electronic transfer at the level of cellulose-derived carbon materials,and proposes corresponding strategies to improve rate performance targeted at various precursors of cellulose-based materials.This review also presents an update on recent progress in cellulose-based materials and cellulose-derived carbon materials,with particular focuses on their molecular,crystalline,and aggregation structures.Furthermore,the relationship between storage sodium and rate performance the carbon materials is elucidated through theoretical calculations and characterization analyses.Finally,future perspectives regarding challenges and opportunities in the research field of cellulose-derived carbon anodes are briefly highlighted.展开更多
The engineering of plant-based precursor for nitrogen doping has become one of the most promising strategies to enhance rate capability of hard carbon materials for sodium-ion batteries;however,the poor rate performan...The engineering of plant-based precursor for nitrogen doping has become one of the most promising strategies to enhance rate capability of hard carbon materials for sodium-ion batteries;however,the poor rate performance is mainly caused by lack of pyridine nitrogen,which often tends to escape because of high temperature in preparation process of hard carbon.In this paper,a high-rate kapok fiber-derived hard carbon is fabricated by cross-linking carboxyl group in 2,6-pyridinedicarboxylic acid with the exposed hydroxyl group on alkalized kapok with assistance of zinc chloride.Specially,a high nitrogen doping content of 4.24%is achieved,most of which are pyridine nitrogen;this is crucial for improving the defect sites and electronic conductivity of hard carbon.The optimized carbon with feature of high nitrogen content,abundant functional groups,degree of disorder,and large layer spacing exhibits high capacity of 401.7 mAh g^(−1)at a current density of 0.05 A g^(−1),and more importantly,good rate performance,for example,even at the current density of 2 A g^(−1),a specific capacity of 159.5 mAh g^(−1)can be obtained.These findings make plant-based hard carbon a promising candidate for commercial application of sodium-ion batteries,achieving high-rate performance with the enhanced pre-cross-linking interaction between plant precursors and dopants to optimize aromatization process by auxiliary pyrolysis.展开更多
LiNi0.8Co0.1Mn0.1O2 powder was prepared by mixing LiOH·H2O and co-precipitated Ni0.8Co0.1Mn0.1(OH)2 at a molar ratio of 1:1.05, followed by sintering at different temperatures. The effects of temperature on th...LiNi0.8Co0.1Mn0.1O2 powder was prepared by mixing LiOH·H2O and co-precipitated Ni0.8Co0.1Mn0.1(OH)2 at a molar ratio of 1:1.05, followed by sintering at different temperatures. The effects of temperature on the morphology, structure and electrochemical performance were extensively studied. SEM and XRD results demonstrate that the sintering temperature has large influence on the morphology and structure and suitable temperature is very important to obtain spherical materials and suppresses the ionic distribution. The charge-discharge tests show that the electrochemical performance of LiNi0.8Co0.1Mn0.1O2 powders becomes better with the increase of temperature from 700 ℃ to 750 ℃ and higher temperature will deteriorate the performance. Although both of materials obtained at 750 ℃ and 780 ℃ demonstrate almost identical cyclic stability at 2C rate, which delivers 71.9%retention after 200 cycles, the rate performance of powder calcined at 780 ℃ is much poorer than that at 750 ℃. The XRD results demonstrate that the poor performance is ascribed to more severe ionic distribution caused by higher temperature.展开更多
Olivine lithium iron phosphate(Li Fe PO4) is considered as a promising cathode material for high power density lithium ion battery due to its high capacity, long cycle life, environmental friendly, low cost, and safet...Olivine lithium iron phosphate(Li Fe PO4) is considered as a promising cathode material for high power density lithium ion battery due to its high capacity, long cycle life, environmental friendly, low cost, and safety consideration. The theoretical capacity of Li Fe PO4 based on one electron reaction is 170 m Ah g-1at the stable voltage plateau of 3.5 V vs. Li/Li+. However, the instinct drawbacks of olivine structure induce a poor rate performance, resulting from the low lithium ion diffusion rate and low electronic conductivity.In this review, we summarize the methods for enhancing the rate performance of Li Fe PO4 cathode materials,including carbon coating, elements doping, preparation of nanosized materials, porous materials and composites,etc. Meanwhile, the advantages and disadvantages of above methods are also discussed.展开更多
Commercial Cu and Al current collectors for lithium-ion batteries(LIBs)possess high electrical conductivity,suitable chemical and electrochemical stability.However,the relatively flat surface of traditional current co...Commercial Cu and Al current collectors for lithium-ion batteries(LIBs)possess high electrical conductivity,suitable chemical and electrochemical stability.However,the relatively flat surface of traditional current collectors causes weak bonding strength and poor electrochemical contact between current collectors and electrode materials,resulting in potential detachment of active materials and rapid capacity degradation during extended cycling.Here,we report an ultrafast femtosecond laser strategy to manufacture hierarchical micro/nanostructures on commercial Al and Cu foils as current collectors for high-performance LIBs.The hierarchically micro/nanostructured current collectors(HMNCCs)with high surface area and roughness offer strong adhesion to active materials,fast electronic delivery of entire electrodes,significantly improving reversible capacities and cyclic stability of HMNCCs based LIBs.Consequently,LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2)(NCM523)cathode with Al HMNCC generated a high reversible capacity after 200 cycles(25%higher than that of cathode with Al CC).Besides,graphite anode with Cu HMNCC also maintained prominent reversible capacity even after 600 cycles.Moreover,the full cell assembled by graphite anode with Cu HMNCC and NCM523 cathode with Al HMNCC achieved high reversible capacity and remarkable cycling stability under industrial-grade mass loading.This study provides promising candidate for achieving high-performance LIBs current collectors.展开更多
Constructing layered-spinel composites is important to improve the rate performance of lithium-rich layered oxides.However,up to now,the effect of microstructure of composites on the rate performance has not been well...Constructing layered-spinel composites is important to improve the rate performance of lithium-rich layered oxides.However,up to now,the effect of microstructure of composites on the rate performance has not been well investigated.In this study,a series of samples were prepared by a simple protonation and de-protonation for the pristine layered material(LiMnNiCoO)obtained by sol-gel method.The characterizations of XRD,Raman and oxidation-reduction potentials of charge-discharge curves demonstrated that these samples after de-protonation are layered-spinel composites.When these composites were tested as a cathode of lithium-ion batteries,the sample treated with 0.1 M of nitric acid exhibited higher discharge capacities at each current density than that of other composites.The outstanding rate performance is attributed to the high concentration of conduction electron resulting from the low average valence state(44.2%of Ni)as confirmed by its high conductivity(1.124×10??mat39800Hz)and ambient temperature magnetic susceptibility(8.40×10emu/Oe?mol).This work has a guiding significance for the synthesis of high rate performance of lithium battery cathode materials.展开更多
La_(4)NiLiO_(8)-coated NCM622 samples were prepared through a sol-gel method,and the electrochemical performance as cathode materials was investigated.It is revealed that part of the introduced La^(3+)ions produce a c...La_(4)NiLiO_(8)-coated NCM622 samples were prepared through a sol-gel method,and the electrochemical performance as cathode materials was investigated.It is revealed that part of the introduced La^(3+)ions produce a coating layer on the surface of NCM622 particles,while the rest occupy the 3b position of the lattice.The optimized sample exhibits a capacity retention of 96.54%after 100 cycles under 1C rate with a discharge specific capacity of 117.54 mAh·g^(-1)under 5C rate,much higher than those of the unmodified sample.The results show that the addition of La^(3+)ion can greatly improve the cyclic stability and the rate performance of NCM622.展开更多
In this paper,a water-based binder was used in LiFePO4 Li-ion batteries and the factors affecting the battery performance were analyzed. The type and amount of conductive agent and the amount of binder were found to h...In this paper,a water-based binder was used in LiFePO4 Li-ion batteries and the factors affecting the battery performance were analyzed. The type and amount of conductive agent and the amount of binder were found to have a significant impact on the rate performance of LiFePO4 Li-ion batteries. The impact of the two types of binders used in the test was not obvious.展开更多
The use of an aqueous slurry in the manufacture of lithium ion batteries has the advantages of being environmentally friendly,harmless to the human body,and low in production cost.In this study,the factors affecting t...The use of an aqueous slurry in the manufacture of lithium ion batteries has the advantages of being environmentally friendly,harmless to the human body,and low in production cost.In this study,the factors affecting the specific capacity and rate performance of the aqueous Li4Ti5O12 battery were studied,including the Li4Ti5O12 structure,aqueous binder,conductive agent,and surface density.The results show that a spherical secondary particle structure of Li4Ti5O12 is beneficial to its discharge rate performance.In addition,an aqueous binder with high conductivity improves the specific capacity and high rate charge/discharge performance of the battery,and when the amount of binder is 3%,the Li4Ti5O12 battery performs better.A chain structure in the conductive agent also improves the specific capacity and discharge rate performance of the Li4Ti5O12 battery,and increases the degree to which the discharge rate performance of the conductive agent can be further improved.Lastly,the lower the surface density,the better the rate performance of the Li4Ti5O12 battery.展开更多
A new Fe3C-N-doped reduced graphene oxide(Fe3C-N-rGO)prepared by a facile method is used as a separator for high performance lithium-sulfur(Li-S)batteries.The Fe3C-N-rGO is coated on the surface of commercial polyprop...A new Fe3C-N-doped reduced graphene oxide(Fe3C-N-rGO)prepared by a facile method is used as a separator for high performance lithium-sulfur(Li-S)batteries.The Fe3C-N-rGO is coated on the surface of commercial polypropylene separator(Celgard 2400)close to the sulfur cathode.The special nanotubes are in-situ catalyzed by Fe3C nanoparticles.They could entrap lithium polysulfides(Li PSs)to restrain the shuttle effect and reduce the loss of active material.The battery with the modified separator and sulfur cathode shows an excellent cycle performance.It has a high rate performance,580.5 mAh/g at the high current rate of 4 C relative to 1075 mAh/g at 0.1 C.It also has an initial discharge capacity of 774.8 m Ah/g measured at 0.5 C and remains 721.8 mAh/g after 100 cycles with a high capacity retention of 93.2%.The outstanding performances are notable in recently reports with modified separator.展开更多
2D MXene nanosheets with metallic conductivity and high pseudo-capacitance are promising electrode materials for supercapacitors.Especially,MXene films can be directly used as electrodes for flexible supercapacitors.H...2D MXene nanosheets with metallic conductivity and high pseudo-capacitance are promising electrode materials for supercapacitors.Especially,MXene films can be directly used as electrodes for flexible supercapacitors.However,they suffer from sluggish ion transport due to self-restacking,causing limited electrochemical performance.Herein,a flexible 3D porous MXene film is fabricated by incorporating graphene oxide(GO) into MXene film followed by self-propagating reduction.The self-propagating process is facile and effective,which can be accomplished in 1.25 s and result in 3D porous framework by releasing substantial gas instantaneously.As the 3D porous structure provides massive ion-accessible active sites and promotes fast ion transport,the MXene-rGO films exhibit superior capacitance and rate performance.With the rGO content of 20%,the MXene-rGO-20 film delivers a high capacitance of 329.9 F g^(-1) at 5 mV s^(-1) in 3 M H2 SO4 electrolyte and remains 260.1 F g^(-1) at 1,000 mV s^(-1) as well as good flexibility.Furthermore,the initial capacitance is retained above 90% after 40,000 cycles at 100 A g^(-1),revealing good cycle stability.This work not only provides a high-performance flexible electrode for supercapacitors,but also proposes an efficient and time-saving strategy for constructing 3D structure from 2D materials.展开更多
Although advanced anode materials for the lithium-ion battery have been investigated for decades,a reliable,high-capacity,and durable material that can enable a fast charge remains elusive.Herein,we report that a meta...Although advanced anode materials for the lithium-ion battery have been investigated for decades,a reliable,high-capacity,and durable material that can enable a fast charge remains elusive.Herein,we report that a metal phosphorous trichalcogenide of MnPS_(3)(manganese phosphorus trisulfide),endowed with a unique and layered van der Waals structure,is highly beneficial for the fast insertion/extraction of alkali metal ions and can facilitate changes in the buffer volume during cycles with robust structural stability.The few-layered MnPS_(3)anodes displayed the desirable specific capacity and excellent rate chargeability owing to their good electronic and ionic conductivities.When assembled as a half-cell lithium-ion battery,a high reversible capacity of 380 mA h g^(−1)was maintained by the MnPS_(3)after 3000 cycles at a high current density of 4 A g^(−1),with a capacity retention of close to or above 100%.In full-cell testing,a reversible capacity of 450 mA h g^(−1)after 200 cycles was maintained as well.The results of in-situ TEM revealed that MnPS_(3)nanoflakes maintained a high structural integrity without exhibiting any pulverization after undergoing large volumetric expansion for the insertion of a large number of lithium ions.Their kinetics of lithium-ion diffusion,stable structure,and high pseudocapacitance contributed to their comprehensive performance,for example,a high specific capacity,rapid charge-discharge,and long cyclability.MnPS_(3)is thus an efficient anode for the next generation of batteries with a fast charge/discharge capability.展开更多
Rate of penetration(ROP) of a tunnel boring machine(TBM) in a rock environment is generally a key parameter for the successful accomplishment of a tunneling project. The objectives of this work are to compare the accu...Rate of penetration(ROP) of a tunnel boring machine(TBM) in a rock environment is generally a key parameter for the successful accomplishment of a tunneling project. The objectives of this work are to compare the accuracy of prediction models employing partial least squares(PLS) regression and support vector machine(SVM) regression technique for modeling the penetration rate of TBM. To develop the proposed models, the database that is composed of intact rock properties including uniaxial compressive strength(UCS), Brazilian tensile strength(BTS), and peak slope index(PSI), and also rock mass properties including distance between planes of weakness(DPW) and the alpha angle(α) are input as dependent variables and the measured ROP is chosen as an independent variable. Two hundred sets of data are collected from Queens Water Tunnel and Karaj-Tehran water transfer tunnel TBM project. The accuracy of the prediction models is measured by the coefficient of determination(R2) and root mean squares error(RMSE) between predicted and observed yield employing 10-fold cross-validation schemes. The R2 and RMSE of prediction are 0.8183 and 0.1807 for SVMR method, and 0.9999 and 0.0011 for PLS method, respectively. Comparison between the values of statistical parameters reveals the superiority of the PLSR model over SVMR one.展开更多
Bismuth has drawn widespread attention as a prospective alloying-type anode for sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs)due to its large volumetric capacity.However,such material encounters drastic ...Bismuth has drawn widespread attention as a prospective alloying-type anode for sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs)due to its large volumetric capacity.However,such material encounters drastic particle pulverization and overgrowth of solid-electrolyte interphase(SEI)upon repeated(de)alloying,thus causing poor rate and cycling degradation.Herein,we report a unique structure design with bismuth nanorods confined in hollow N,S-codoped carbon nanotubes(Bi@NS-C)fabricated by a solvothermal method and in-situ thermal reduction.Ex-situ SEM observations confirm that such a design can significantly suppress the size fining of Bi nanorods,thus inhibiting the particle pulverization and repeated SEI growth upon charging/discharging.The as achieved Bi@NS-C demonstrates outstanding rate capability for SIBs(96.5%capacity retention at 30 A g^(-1) vs.1 A g^(-1)),and a record high rate performance for PIBs(399.5 m Ah g^(-1)@20 A g^(-1)).Notably,the as constructed full cell(Na_(3)V_(2)(PO_(4))_(3)@C|Bi@NS-C)demonstrates impressive performance with a high energy density of 219.8 W h kg^(-1) and a high-power density of 6443.3 W kg^(-1)(based on the total mass of active materials on both electrodes),outperforming the state-of-the-art literature.展开更多
Ni-rich layered cathodes(LiNi_xCo_yMn_(2)O_(2))have recently drawn much attention due to their high specific capacities.However,the poor rate capability of LiNi_xCo_yMn_(2)O_(2),which is mainly originated from the two...Ni-rich layered cathodes(LiNi_xCo_yMn_(2)O_(2))have recently drawn much attention due to their high specific capacities.However,the poor rate capability of LiNi_xCo_yMn_(2)O_(2),which is mainly originated from the twodimensional diffusion of Li ions in the Li slab and Li^(+)/Ni^(2+)cation mixing that hinder the Li^(+)diffusion,has limited their practical application where high power density is needed.Here we integrated Li_(2)MnO_(3)nanodomains into the layered structure of a typical Ni-rich LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)material,which minimized the Li^(+)/Ni^(2+)cationic disordering,and more importantly,established grain boundaries within the NCM811 matrix,thus providing a three-dimensional diffusion channel for Li ions.Accordingly,an average Li-ion diffusion coefficient(D_(Li+))of the Li_(2)MnO_(3)-integrated LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811-I)during charge/discharge was calculated to be approximately 6*10^(-10)cm~2 S^(-1),two times of that in the bare NCM811(3*10^(-10)cm~2 S^(-1)).The capacity delivered by the NCM811-I(154.5 mAh g^(-1))was higher than that of NCM811(141.3 mAh g^(-1))at 2 C,and the capacity retention of NCM811-I increased by 13.6%after100 cycles at 0.1 C and 13.4%after 500 cycles at 1 C compared to NCM811.This work provides a valuable routine to improve the rate capability of Ni-rich cathode materials,which may be applied to other oxide cathodes with sluggish Li-ion transportation.展开更多
To obtain the influence laws of the fine gangue rate on the properties of coal gangue cementitious paste, the slump, divergence, stratification, bleeding, setting time and mechanical strength with the change of fine g...To obtain the influence laws of the fine gangue rate on the properties of coal gangue cementitious paste, the slump, divergence, stratification, bleeding, setting time and mechanical strength with the change of fine gangue rate were studied on the basis of keeping the amount of cementing material and slurry concentration unchanged. The porosity and the distribution of pore diameter of the filling specimen for curing 28 d were tested by a mercury injection instrument under different fine gangue rate conditions. It was shown that the slump, divergence, setting time and compressive strength of the paste firstly increased and then decreased with increasing fine gangue rate. The stratification and bleeding rate decreased with increasing fine gangue rate. The smaller the critical pore size of the paste was, the smaller the porosity was, the smaller the average pore size was. When the fine gangue rate was 40%, the maximum critical pore diameter of the paste was 55.79 μm, and the corresponding porosity was 17.54%, and the properties of filling paste were the best. When the fine gangue rate further increased, the aggregate surface area increased, and the reaction product of cementitious materials could not effectively fill the pores. It weakened the agglomeration effect. The particles surface of coal gangue was fragmental and flake deposit with irregular shape and uneven fold morphology. It was easy to be bonded with the surface of other filling material. The hydration products of coal gangue cementitious material were a large number of C-S-H gel with fibrous shape and ettringite(AFt) with compact block structure. The theoretical reference was provided for the preparation of low cost gangue cemented filling materials in coal mines.展开更多
Having argued the importance of China's sustainable development in global sustainability, the authors review the achievements of China in sustainable development, especially its institutional construction. Environ...Having argued the importance of China's sustainable development in global sustainability, the authors review the achievements of China in sustainable development, especially its institutional construction. Environment to be counted in official's political performance rating system is thought of as a new institutional mechanism in China facilitating its sustainable development and then global sustainability. Then its significance is narrated and visions in future are envisioned. In the end, certain concrete suggestions for the rating system are given in a practical way.展开更多
[Objective] The paper was to investigate effects on fermentation bed temperature,growth performance,diarrhea rate and digestive en-zyme activity of weaning piglets by using spent mushroom substrate of Pleurotus eryngi...[Objective] The paper was to investigate effects on fermentation bed temperature,growth performance,diarrhea rate and digestive en-zyme activity of weaning piglets by using spent mushroom substrate of Pleurotus eryngii as padding.[Method] A total of 120 weaning piglets(Duroc × Landrace ×Yorkshire) with average initial body weight of(8.0 ±0.5)kg were allocated to five dietary treatments in a randomized complete block design for 42 d,each of which was replicated three times with eight piglets per replicate(half male,half female).The padding for control group was(50% sawdust +50% rice husk);experimental group Ⅰ 100% spent mushroom substrate;experimental group Ⅱ(15% sawdust +15% rice husk +70% spent mushroom substrate);experimental group Ⅲ(25% sawdust +25% rice husk +50% spent mushroom substrate);experimental group Ⅳ(35% sawdust +35% rice husk +30% spent substrate).[Result] There was no significant difference in surface temperature of fermentation bed between experimental groups and control group(P〉0.05).Compared with the control group,the temperature under 20 cm of fermentation bed in ex-perimental groups I,Ⅱ and Ⅲ increased significantly(P〈0.05).Except for experimental group Ⅳ,other three experimental groups had higher aver-age daily gain(P〈0.05) and experimental group Ⅰ had higher average daily feed intake(P〈0.05) compared to the control group.The diarrhea rate and mortality of weaning piglets in experimental groups Ⅱ,Ⅲ and Ⅳ were significantly decreased compared with the control group(P〈0.05).Compared with the control group,other three experimental groups had higher digestive enzyme activity in duodenal contents except for experimental group Ⅳ(P〈0.05).[Conclusion] Spent mushroom substrate of P.eryngii can be used as fermentation bed padding,and the optimal proportion was experimental group Ⅲ.展开更多
In this article, we consider the faster than Nyquist(FTN) technology in aspects of the application of the Viterbi algorithm(VA). Finite in time optimal FTN signals are used to provide a symbol rate higher than the &qu...In this article, we consider the faster than Nyquist(FTN) technology in aspects of the application of the Viterbi algorithm(VA). Finite in time optimal FTN signals are used to provide a symbol rate higher than the "Nyquist barrier" without any encoding. These signals are obtained as the solutions of the corresponding optimization problem. Optimal signals are characterized by intersymbol interference(ISI). This fact leads to significant bit error rate(BER) performance degradation for "classical" forms of signals. However, ISI can be controlled by the restriction of the optimization problem. So we can use optimal signals in conditions of increased duration and an increased symbol rate without significant energy losses. The additional symbol rate increase leads to the increase of the reception algorithm complexity. We consider the application of VA for optimal FTN signals reception. The application of VA for receiving optimal FTN signals with increased duration provides close to the potential performance of BER,while the symbol rate is twice above the Nyquist limit.展开更多
Currently,the major challenge in terms of research on K-ion batteries is to ensure that they possess satisfactory cycle stability and specific capacity,especially in terms of the intrinsically sluggish kinetics induce...Currently,the major challenge in terms of research on K-ion batteries is to ensure that they possess satisfactory cycle stability and specific capacity,especially in terms of the intrinsically sluggish kinetics induced by the large radius of K+ions.Here,we explore high-performance K-ion half/full batteries with high rate capability,high specific capacity,and extremely durable cycle stability based on carbon nanosheets with tailored N dopants,which can alleviate the change of volume,increase electronic conductivity,and enhance the K+ion adsorption.The as-assembled K-ion half-batteries show an excellent rate capability of 468 mA h g^(−1) at 100 mA g^(−1),which is superior to those of most carbon materials reported to date.Moreover,the as-assembled half-cells have an outstanding life span,running 40,000 cycles over 8 months with a specific capacity retention of 100%at a high current density of 2000 mA g^(−1),and the target full cells deliver a high reversible specific capacity of 146 mA h g^(−1) after 2000 cycles over 2 months,with a specific capacity retention of 113%at a high current density of 500 mA g^(−1),both of which are state of the art in the field of K-ion batteries.This study might provide some insights into and potential avenues for exploration of advanced K-ion batteries with durable stability for practical applications.展开更多
基金partly supported by the National Natural Science Foundation of China(51903113,51763014,and 52073133)the China Postdoctoral Science Foundation(2022T150282)+1 种基金Lanzhou Young Science and Technology Talent Innovation Project(2023-QN-101)the Program for Hongliu Excellent and Distinguished Young Scholars at Lanzhou University of Technology.
文摘Cellulose-derived carbon is regarded as one of the most promising candidates for high-performance anode materials in sodium-ion batteries;however,its poor rate performance at higher current density remains a challenge to achieve high power density sodium-ion batteries.The present review comprehensively elucidates the structural characteristics of cellulose-based materials and cellulose-derived carbon materials,explores the limitations in enhancing rate performance arising from ion diffusion and electronic transfer at the level of cellulose-derived carbon materials,and proposes corresponding strategies to improve rate performance targeted at various precursors of cellulose-based materials.This review also presents an update on recent progress in cellulose-based materials and cellulose-derived carbon materials,with particular focuses on their molecular,crystalline,and aggregation structures.Furthermore,the relationship between storage sodium and rate performance the carbon materials is elucidated through theoretical calculations and characterization analyses.Finally,future perspectives regarding challenges and opportunities in the research field of cellulose-derived carbon anodes are briefly highlighted.
基金supported by National Natural Science Foundation of China(51903113 and 52073133)China Postdoctoral Science Foundation(2022T150282)+1 种基金Lanzhou Young Science and Technology Talent Innovation Project(2023-QN-101the Program for Hongliu Excellent and Distinguished Young Scholars at Lanzhou University of Technology.
文摘The engineering of plant-based precursor for nitrogen doping has become one of the most promising strategies to enhance rate capability of hard carbon materials for sodium-ion batteries;however,the poor rate performance is mainly caused by lack of pyridine nitrogen,which often tends to escape because of high temperature in preparation process of hard carbon.In this paper,a high-rate kapok fiber-derived hard carbon is fabricated by cross-linking carboxyl group in 2,6-pyridinedicarboxylic acid with the exposed hydroxyl group on alkalized kapok with assistance of zinc chloride.Specially,a high nitrogen doping content of 4.24%is achieved,most of which are pyridine nitrogen;this is crucial for improving the defect sites and electronic conductivity of hard carbon.The optimized carbon with feature of high nitrogen content,abundant functional groups,degree of disorder,and large layer spacing exhibits high capacity of 401.7 mAh g^(−1)at a current density of 0.05 A g^(−1),and more importantly,good rate performance,for example,even at the current density of 2 A g^(−1),a specific capacity of 159.5 mAh g^(−1)can be obtained.These findings make plant-based hard carbon a promising candidate for commercial application of sodium-ion batteries,achieving high-rate performance with the enhanced pre-cross-linking interaction between plant precursors and dopants to optimize aromatization process by auxiliary pyrolysis.
基金Project(2014CB643406)supported by the National Basic Research Program of China
文摘LiNi0.8Co0.1Mn0.1O2 powder was prepared by mixing LiOH·H2O and co-precipitated Ni0.8Co0.1Mn0.1(OH)2 at a molar ratio of 1:1.05, followed by sintering at different temperatures. The effects of temperature on the morphology, structure and electrochemical performance were extensively studied. SEM and XRD results demonstrate that the sintering temperature has large influence on the morphology and structure and suitable temperature is very important to obtain spherical materials and suppresses the ionic distribution. The charge-discharge tests show that the electrochemical performance of LiNi0.8Co0.1Mn0.1O2 powders becomes better with the increase of temperature from 700 ℃ to 750 ℃ and higher temperature will deteriorate the performance. Although both of materials obtained at 750 ℃ and 780 ℃ demonstrate almost identical cyclic stability at 2C rate, which delivers 71.9%retention after 200 cycles, the rate performance of powder calcined at 780 ℃ is much poorer than that at 750 ℃. The XRD results demonstrate that the poor performance is ascribed to more severe ionic distribution caused by higher temperature.
基金supported by the Foundation on the Creative Research Team Construction Promotion Pro ject of Beijing Municipal Institutions
文摘Olivine lithium iron phosphate(Li Fe PO4) is considered as a promising cathode material for high power density lithium ion battery due to its high capacity, long cycle life, environmental friendly, low cost, and safety consideration. The theoretical capacity of Li Fe PO4 based on one electron reaction is 170 m Ah g-1at the stable voltage plateau of 3.5 V vs. Li/Li+. However, the instinct drawbacks of olivine structure induce a poor rate performance, resulting from the low lithium ion diffusion rate and low electronic conductivity.In this review, we summarize the methods for enhancing the rate performance of Li Fe PO4 cathode materials,including carbon coating, elements doping, preparation of nanosized materials, porous materials and composites,etc. Meanwhile, the advantages and disadvantages of above methods are also discussed.
基金financially supported by National Natural Science Foundation of China(No.52074113 and No.22005091)the Fundamental Research Funds of the Central Universities(No.531107051048)support from the Hunan Key Laboratory of Two-Dimensional Materials(No.2018TP1010)。
文摘Commercial Cu and Al current collectors for lithium-ion batteries(LIBs)possess high electrical conductivity,suitable chemical and electrochemical stability.However,the relatively flat surface of traditional current collectors causes weak bonding strength and poor electrochemical contact between current collectors and electrode materials,resulting in potential detachment of active materials and rapid capacity degradation during extended cycling.Here,we report an ultrafast femtosecond laser strategy to manufacture hierarchical micro/nanostructures on commercial Al and Cu foils as current collectors for high-performance LIBs.The hierarchically micro/nanostructured current collectors(HMNCCs)with high surface area and roughness offer strong adhesion to active materials,fast electronic delivery of entire electrodes,significantly improving reversible capacities and cyclic stability of HMNCCs based LIBs.Consequently,LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2)(NCM523)cathode with Al HMNCC generated a high reversible capacity after 200 cycles(25%higher than that of cathode with Al CC).Besides,graphite anode with Cu HMNCC also maintained prominent reversible capacity even after 600 cycles.Moreover,the full cell assembled by graphite anode with Cu HMNCC and NCM523 cathode with Al HMNCC achieved high reversible capacity and remarkable cycling stability under industrial-grade mass loading.This study provides promising candidate for achieving high-performance LIBs current collectors.
基金financially supported by NSFC(No.21571176,21611530688,21771171,21671077 and 21025104)
文摘Constructing layered-spinel composites is important to improve the rate performance of lithium-rich layered oxides.However,up to now,the effect of microstructure of composites on the rate performance has not been well investigated.In this study,a series of samples were prepared by a simple protonation and de-protonation for the pristine layered material(LiMnNiCoO)obtained by sol-gel method.The characterizations of XRD,Raman and oxidation-reduction potentials of charge-discharge curves demonstrated that these samples after de-protonation are layered-spinel composites.When these composites were tested as a cathode of lithium-ion batteries,the sample treated with 0.1 M of nitric acid exhibited higher discharge capacities at each current density than that of other composites.The outstanding rate performance is attributed to the high concentration of conduction electron resulting from the low average valence state(44.2%of Ni)as confirmed by its high conductivity(1.124×10??mat39800Hz)and ambient temperature magnetic susceptibility(8.40×10emu/Oe?mol).This work has a guiding significance for the synthesis of high rate performance of lithium battery cathode materials.
基金Funded by the Guangdong Key R&D Program(Nos.2020B 0909040001 and 2019B090909003)。
文摘La_(4)NiLiO_(8)-coated NCM622 samples were prepared through a sol-gel method,and the electrochemical performance as cathode materials was investigated.It is revealed that part of the introduced La^(3+)ions produce a coating layer on the surface of NCM622 particles,while the rest occupy the 3b position of the lattice.The optimized sample exhibits a capacity retention of 96.54%after 100 cycles under 1C rate with a discharge specific capacity of 117.54 mAh·g^(-1)under 5C rate,much higher than those of the unmodified sample.The results show that the addition of La^(3+)ion can greatly improve the cyclic stability and the rate performance of NCM622.
文摘In this paper,a water-based binder was used in LiFePO4 Li-ion batteries and the factors affecting the battery performance were analyzed. The type and amount of conductive agent and the amount of binder were found to have a significant impact on the rate performance of LiFePO4 Li-ion batteries. The impact of the two types of binders used in the test was not obvious.
文摘The use of an aqueous slurry in the manufacture of lithium ion batteries has the advantages of being environmentally friendly,harmless to the human body,and low in production cost.In this study,the factors affecting the specific capacity and rate performance of the aqueous Li4Ti5O12 battery were studied,including the Li4Ti5O12 structure,aqueous binder,conductive agent,and surface density.The results show that a spherical secondary particle structure of Li4Ti5O12 is beneficial to its discharge rate performance.In addition,an aqueous binder with high conductivity improves the specific capacity and high rate charge/discharge performance of the battery,and when the amount of binder is 3%,the Li4Ti5O12 battery performs better.A chain structure in the conductive agent also improves the specific capacity and discharge rate performance of the Li4Ti5O12 battery,and increases the degree to which the discharge rate performance of the conductive agent can be further improved.Lastly,the lower the surface density,the better the rate performance of the Li4Ti5O12 battery.
基金supported by the National Natural Science Foundation of China(Grant no.51672075,21271069,51772092,51704106)Science and Technology Program of Hunan Province(Grant no.2015JC3049)
文摘A new Fe3C-N-doped reduced graphene oxide(Fe3C-N-rGO)prepared by a facile method is used as a separator for high performance lithium-sulfur(Li-S)batteries.The Fe3C-N-rGO is coated on the surface of commercial polypropylene separator(Celgard 2400)close to the sulfur cathode.The special nanotubes are in-situ catalyzed by Fe3C nanoparticles.They could entrap lithium polysulfides(Li PSs)to restrain the shuttle effect and reduce the loss of active material.The battery with the modified separator and sulfur cathode shows an excellent cycle performance.It has a high rate performance,580.5 mAh/g at the high current rate of 4 C relative to 1075 mAh/g at 0.1 C.It also has an initial discharge capacity of 774.8 m Ah/g measured at 0.5 C and remains 721.8 mAh/g after 100 cycles with a high capacity retention of 93.2%.The outstanding performances are notable in recently reports with modified separator.
基金financially supported by the National Natural Science Foundation of China (NSFC, 51572011 and 51802012)the National Key Research and Development Program of China (2017YFB0102204)the Fundamental Research Funds for the Central Universities (buctrc201813 and buctrc201819)。
文摘2D MXene nanosheets with metallic conductivity and high pseudo-capacitance are promising electrode materials for supercapacitors.Especially,MXene films can be directly used as electrodes for flexible supercapacitors.However,they suffer from sluggish ion transport due to self-restacking,causing limited electrochemical performance.Herein,a flexible 3D porous MXene film is fabricated by incorporating graphene oxide(GO) into MXene film followed by self-propagating reduction.The self-propagating process is facile and effective,which can be accomplished in 1.25 s and result in 3D porous framework by releasing substantial gas instantaneously.As the 3D porous structure provides massive ion-accessible active sites and promotes fast ion transport,the MXene-rGO films exhibit superior capacitance and rate performance.With the rGO content of 20%,the MXene-rGO-20 film delivers a high capacitance of 329.9 F g^(-1) at 5 mV s^(-1) in 3 M H2 SO4 electrolyte and remains 260.1 F g^(-1) at 1,000 mV s^(-1) as well as good flexibility.Furthermore,the initial capacitance is retained above 90% after 40,000 cycles at 100 A g^(-1),revealing good cycle stability.This work not only provides a high-performance flexible electrode for supercapacitors,but also proposes an efficient and time-saving strategy for constructing 3D structure from 2D materials.
基金National Natural Science Foundation of China,Grant/Award Numbers:11902185,11972219,U21A2086National Key Research and Development Program of China,Grant/Award Number:2020YFB0704503+1 种基金Young Elite Scientist Sponsorship Program by CAST,Grant/Award Number:2019QNRC001Shanghai Sailing Program,Grant/Award Number:19YF1415100。
文摘Although advanced anode materials for the lithium-ion battery have been investigated for decades,a reliable,high-capacity,and durable material that can enable a fast charge remains elusive.Herein,we report that a metal phosphorous trichalcogenide of MnPS_(3)(manganese phosphorus trisulfide),endowed with a unique and layered van der Waals structure,is highly beneficial for the fast insertion/extraction of alkali metal ions and can facilitate changes in the buffer volume during cycles with robust structural stability.The few-layered MnPS_(3)anodes displayed the desirable specific capacity and excellent rate chargeability owing to their good electronic and ionic conductivities.When assembled as a half-cell lithium-ion battery,a high reversible capacity of 380 mA h g^(−1)was maintained by the MnPS_(3)after 3000 cycles at a high current density of 4 A g^(−1),with a capacity retention of close to or above 100%.In full-cell testing,a reversible capacity of 450 mA h g^(−1)after 200 cycles was maintained as well.The results of in-situ TEM revealed that MnPS_(3)nanoflakes maintained a high structural integrity without exhibiting any pulverization after undergoing large volumetric expansion for the insertion of a large number of lithium ions.Their kinetics of lithium-ion diffusion,stable structure,and high pseudocapacitance contributed to their comprehensive performance,for example,a high specific capacity,rapid charge-discharge,and long cyclability.MnPS_(3)is thus an efficient anode for the next generation of batteries with a fast charge/discharge capability.
基金Project(2010CB732004)supported by the National Basic Research Program of ChinaProjects(50934006,41272304)supported by the National Natural Science Foundation of China
文摘Rate of penetration(ROP) of a tunnel boring machine(TBM) in a rock environment is generally a key parameter for the successful accomplishment of a tunneling project. The objectives of this work are to compare the accuracy of prediction models employing partial least squares(PLS) regression and support vector machine(SVM) regression technique for modeling the penetration rate of TBM. To develop the proposed models, the database that is composed of intact rock properties including uniaxial compressive strength(UCS), Brazilian tensile strength(BTS), and peak slope index(PSI), and also rock mass properties including distance between planes of weakness(DPW) and the alpha angle(α) are input as dependent variables and the measured ROP is chosen as an independent variable. Two hundred sets of data are collected from Queens Water Tunnel and Karaj-Tehran water transfer tunnel TBM project. The accuracy of the prediction models is measured by the coefficient of determination(R2) and root mean squares error(RMSE) between predicted and observed yield employing 10-fold cross-validation schemes. The R2 and RMSE of prediction are 0.8183 and 0.1807 for SVMR method, and 0.9999 and 0.0011 for PLS method, respectively. Comparison between the values of statistical parameters reveals the superiority of the PLSR model over SVMR one.
基金supported by the National Natural Science Foundation of China(22179077,51774251)the Shanghai Science and Technology Commission’s"2020 Science and Technology Innovation Action Plan"(20511104003)+2 种基金the Natural Science Foundation in Shanghai(21ZR1424200)the Hebei Natural Science Foundation for Distinguished Young Scholars(B2017203313)the Scientific Research Foundation for the Returned Overseas Chinese Scholars(CG2014003002)。
文摘Bismuth has drawn widespread attention as a prospective alloying-type anode for sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs)due to its large volumetric capacity.However,such material encounters drastic particle pulverization and overgrowth of solid-electrolyte interphase(SEI)upon repeated(de)alloying,thus causing poor rate and cycling degradation.Herein,we report a unique structure design with bismuth nanorods confined in hollow N,S-codoped carbon nanotubes(Bi@NS-C)fabricated by a solvothermal method and in-situ thermal reduction.Ex-situ SEM observations confirm that such a design can significantly suppress the size fining of Bi nanorods,thus inhibiting the particle pulverization and repeated SEI growth upon charging/discharging.The as achieved Bi@NS-C demonstrates outstanding rate capability for SIBs(96.5%capacity retention at 30 A g^(-1) vs.1 A g^(-1)),and a record high rate performance for PIBs(399.5 m Ah g^(-1)@20 A g^(-1)).Notably,the as constructed full cell(Na_(3)V_(2)(PO_(4))_(3)@C|Bi@NS-C)demonstrates impressive performance with a high energy density of 219.8 W h kg^(-1) and a high-power density of 6443.3 W kg^(-1)(based on the total mass of active materials on both electrodes),outperforming the state-of-the-art literature.
基金supported by the Ministry of Science and Technology of the People’s Republic of China(2016YFA0202500)the National Natural Science Foundation of China(52072185)+1 种基金the 111 project(B12015)the National Natural Science Foundation of China(21703147 and U1401248)。
文摘Ni-rich layered cathodes(LiNi_xCo_yMn_(2)O_(2))have recently drawn much attention due to their high specific capacities.However,the poor rate capability of LiNi_xCo_yMn_(2)O_(2),which is mainly originated from the twodimensional diffusion of Li ions in the Li slab and Li^(+)/Ni^(2+)cation mixing that hinder the Li^(+)diffusion,has limited their practical application where high power density is needed.Here we integrated Li_(2)MnO_(3)nanodomains into the layered structure of a typical Ni-rich LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)material,which minimized the Li^(+)/Ni^(2+)cationic disordering,and more importantly,established grain boundaries within the NCM811 matrix,thus providing a three-dimensional diffusion channel for Li ions.Accordingly,an average Li-ion diffusion coefficient(D_(Li+))of the Li_(2)MnO_(3)-integrated LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811-I)during charge/discharge was calculated to be approximately 6*10^(-10)cm~2 S^(-1),two times of that in the bare NCM811(3*10^(-10)cm~2 S^(-1)).The capacity delivered by the NCM811-I(154.5 mAh g^(-1))was higher than that of NCM811(141.3 mAh g^(-1))at 2 C,and the capacity retention of NCM811-I increased by 13.6%after100 cycles at 0.1 C and 13.4%after 500 cycles at 1 C compared to NCM811.This work provides a valuable routine to improve the rate capability of Ni-rich cathode materials,which may be applied to other oxide cathodes with sluggish Li-ion transportation.
基金Funded by the National Science Foundation of China(No.51574055)the Key State Laboratory of Coastal and Offshore Engineering(No.LP1720)
文摘To obtain the influence laws of the fine gangue rate on the properties of coal gangue cementitious paste, the slump, divergence, stratification, bleeding, setting time and mechanical strength with the change of fine gangue rate were studied on the basis of keeping the amount of cementing material and slurry concentration unchanged. The porosity and the distribution of pore diameter of the filling specimen for curing 28 d were tested by a mercury injection instrument under different fine gangue rate conditions. It was shown that the slump, divergence, setting time and compressive strength of the paste firstly increased and then decreased with increasing fine gangue rate. The stratification and bleeding rate decreased with increasing fine gangue rate. The smaller the critical pore size of the paste was, the smaller the porosity was, the smaller the average pore size was. When the fine gangue rate was 40%, the maximum critical pore diameter of the paste was 55.79 μm, and the corresponding porosity was 17.54%, and the properties of filling paste were the best. When the fine gangue rate further increased, the aggregate surface area increased, and the reaction product of cementitious materials could not effectively fill the pores. It weakened the agglomeration effect. The particles surface of coal gangue was fragmental and flake deposit with irregular shape and uneven fold morphology. It was easy to be bonded with the surface of other filling material. The hydration products of coal gangue cementitious material were a large number of C-S-H gel with fibrous shape and ettringite(AFt) with compact block structure. The theoretical reference was provided for the preparation of low cost gangue cemented filling materials in coal mines.
文摘Having argued the importance of China's sustainable development in global sustainability, the authors review the achievements of China in sustainable development, especially its institutional construction. Environment to be counted in official's political performance rating system is thought of as a new institutional mechanism in China facilitating its sustainable development and then global sustainability. Then its significance is narrated and visions in future are envisioned. In the end, certain concrete suggestions for the rating system are given in a practical way.
基金Supported by General Program of Science and Technology Plan of Beijing Municipal Education Commission(KM201512448004)Project of Beijing Municipal Education Commission "Promotion of Scientific and Technological Capacity of ‘Vegetable Basket’ New Production and Operation Subject"(20150203-5)Doctoral Fund of Beijing Vocational College of Agriculture(XY-BS-15-01)
文摘[Objective] The paper was to investigate effects on fermentation bed temperature,growth performance,diarrhea rate and digestive en-zyme activity of weaning piglets by using spent mushroom substrate of Pleurotus eryngii as padding.[Method] A total of 120 weaning piglets(Duroc × Landrace ×Yorkshire) with average initial body weight of(8.0 ±0.5)kg were allocated to five dietary treatments in a randomized complete block design for 42 d,each of which was replicated three times with eight piglets per replicate(half male,half female).The padding for control group was(50% sawdust +50% rice husk);experimental group Ⅰ 100% spent mushroom substrate;experimental group Ⅱ(15% sawdust +15% rice husk +70% spent mushroom substrate);experimental group Ⅲ(25% sawdust +25% rice husk +50% spent mushroom substrate);experimental group Ⅳ(35% sawdust +35% rice husk +30% spent substrate).[Result] There was no significant difference in surface temperature of fermentation bed between experimental groups and control group(P〉0.05).Compared with the control group,the temperature under 20 cm of fermentation bed in ex-perimental groups I,Ⅱ and Ⅲ increased significantly(P〈0.05).Except for experimental group Ⅳ,other three experimental groups had higher aver-age daily gain(P〈0.05) and experimental group Ⅰ had higher average daily feed intake(P〈0.05) compared to the control group.The diarrhea rate and mortality of weaning piglets in experimental groups Ⅱ,Ⅲ and Ⅳ were significantly decreased compared with the control group(P〈0.05).Compared with the control group,other three experimental groups had higher digestive enzyme activity in duodenal contents except for experimental group Ⅳ(P〈0.05).[Conclusion] Spent mushroom substrate of P.eryngii can be used as fermentation bed padding,and the optimal proportion was experimental group Ⅲ.
基金supported by the Grant of the President of the Russian Federation for state support of young Russian scientists(agreementМК-1571.2019.8 No.075-15-2019-1155)。
文摘In this article, we consider the faster than Nyquist(FTN) technology in aspects of the application of the Viterbi algorithm(VA). Finite in time optimal FTN signals are used to provide a symbol rate higher than the "Nyquist barrier" without any encoding. These signals are obtained as the solutions of the corresponding optimization problem. Optimal signals are characterized by intersymbol interference(ISI). This fact leads to significant bit error rate(BER) performance degradation for "classical" forms of signals. However, ISI can be controlled by the restriction of the optimization problem. So we can use optimal signals in conditions of increased duration and an increased symbol rate without significant energy losses. The additional symbol rate increase leads to the increase of the reception algorithm complexity. We consider the application of VA for optimal FTN signals reception. The application of VA for receiving optimal FTN signals with increased duration provides close to the potential performance of BER,while the symbol rate is twice above the Nyquist limit.
基金National Natural Science Foundation of China,Grant/Award Numbers:51972178,52202061Hunan Provincial Nature Science Foundation,Grant/Award Number:2022JJ40068。
文摘Currently,the major challenge in terms of research on K-ion batteries is to ensure that they possess satisfactory cycle stability and specific capacity,especially in terms of the intrinsically sluggish kinetics induced by the large radius of K+ions.Here,we explore high-performance K-ion half/full batteries with high rate capability,high specific capacity,and extremely durable cycle stability based on carbon nanosheets with tailored N dopants,which can alleviate the change of volume,increase electronic conductivity,and enhance the K+ion adsorption.The as-assembled K-ion half-batteries show an excellent rate capability of 468 mA h g^(−1) at 100 mA g^(−1),which is superior to those of most carbon materials reported to date.Moreover,the as-assembled half-cells have an outstanding life span,running 40,000 cycles over 8 months with a specific capacity retention of 100%at a high current density of 2000 mA g^(−1),and the target full cells deliver a high reversible specific capacity of 146 mA h g^(−1) after 2000 cycles over 2 months,with a specific capacity retention of 113%at a high current density of 500 mA g^(−1),both of which are state of the art in the field of K-ion batteries.This study might provide some insights into and potential avenues for exploration of advanced K-ion batteries with durable stability for practical applications.