Automotive-grade Complementary Metal-Oxide-Semiconductor(CMOS)sensors play a crucial role in automotive electronic systems,especially in the context of the rapid development of Advanced Driver Assistance Systems(ADAS)...Automotive-grade Complementary Metal-Oxide-Semiconductor(CMOS)sensors play a crucial role in automotive electronic systems,especially in the context of the rapid development of Advanced Driver Assistance Systems(ADAS)and autonomous driving technologies.Their performance is directly related to the safety and reliability of vehicles.However,automobiles will face a variety of complex environmental conditions during the actual operation,such as high temperature,low temperature,vibration,humidity changes,and light changes,which may have an impact on the performance of CMOS sensors.Therefore,it is of great significance to study the performance of automotive-grade CMOS sensors in different environments.展开更多
Customizing applications through program configuration options has been proved by many open-source and commercial projects as one of the best practices in software engineering. However, traditional performance testing...Customizing applications through program configuration options has been proved by many open-source and commercial projects as one of the best practices in software engineering. However, traditional performance testing is not in synch with this industrial practice. Traditional performance testing techniques consider program inputs as the only external factor. It ignores the performance influence of configuration options. This study aims to stimulate research interest in performance testing in the context of configurable software systems by answering three research questions. That is, why it is necessary to conduct research in performance testing, what are the state-of-the-art techniques, and how do we conduct performance testing research in configurable software systems. In this study, we examine the unique characteristics and challenges of performance testing research in configurable software systems. We review and discuss research topics on the performance bug study, performance anti-patterns, program analysis, and performance testing. We share the research findings from the empirical study and outline the opening opportunities for new and advanced researchers to contribute to the research community.展开更多
To realize automatic control of automobile transmission performance test stand Methods The automatic control technique of the lubricant temperature,the program- controll- edautomaticshifting of the transmission,the c...To realize automatic control of automobile transmission performance test stand Methods The automatic control technique of the lubricant temperature,the program- controll- edautomaticshifting of the transmission,the continuous adjusting of revolution speed and load, data-acquisition and data real-time processing were adopted.Results The lubricant temperature was controlled at the set temperature ±2℃.The automatic shifting of the trans- mission is simple,reliable and accurate.The automatic adjusting of load and rotation speed is rapidandaccurate,the torque divergence is ±1N·m,the rotation speed divergence is ±5r/min Conclusion The four kinds of techniques are applied into the automobile transmission perfor- mance test stand successfully. mancetest stand successfully.展开更多
In view of the limitations of solid metal heat sink in the heat dissipation of high power light emitting diode (LED), a kind of miniaturized phase change heat sink is developed for high power LED packaging. First, t...In view of the limitations of solid metal heat sink in the heat dissipation of high power light emitting diode (LED), a kind of miniaturized phase change heat sink is developed for high power LED packaging. First, the fabrication process of miniaturized phase change heat sink is investigated, upon which all parts of the heat sink are fabricated including main-body and end-cover of the heat sink, the formation of three-dimensional boiling structures at the evaporation end, the sintering of the wick, and the encapsulation of high power LED phase change heat sink. Subsequently, with the assistance of the developed testing system, heat transfer performance of the heat sink is tested under the condition of natural convection, upon which the influence of thermal load and working medium on the heat transfer performance is investigated. Finally, the heat transfer performance of the developed miniaturized phase change heat sink is compared with that of metal solid heat sink. Results show that the developed miniaturized phase change heat sink presents much better heat transfer performance over traditional metal solid heat sink, and is suitable for the packaging of high power LED.展开更多
A set of water powered excavation test system was developed for the comprehensive performance testing and evaluation of water powered percussive rock drill indoors. The whole system contains hydraulic power section, e...A set of water powered excavation test system was developed for the comprehensive performance testing and evaluation of water powered percussive rock drill indoors. The whole system contains hydraulic power section, electronic control system, test and data acquisition system, and assistant devices, such as guideway and drilling bench. Parameters of the water powered percussive rock drill can be obtained by analyzing testing data, which contain impact energy, front and back cavity pressure, pressure and flow in each working part, drilling velocity, frequency and energy efficiency etc. The system is applied to test the self-designed water powered percussive rock drill SYYG65. The parameters of water powered percussive rock drill with impact pressure of about 8.9 MPa are 58.93 J for impact energy, and 8.97% for energy efficiency, which prove the effectiveness of system.展开更多
Three progressive stages of testing techniques are elaborated,which are en-tirely manual operating,taking separate instruments testing and computer program con-trolling.The testing method and principle are detailed ba...Three progressive stages of testing techniques are elaborated,which are en-tirely manual operating,taking separate instruments testing and computer program con-trolling.The testing method and principle are detailed based on the testing process formeteorological parameters,air pressure,air quality and rotating velocity.And every testingtechnique is analyzed.Finally, the technique outlook is viewed.All this plays a leading rolein development of the testing techniques.展开更多
Based on the 1D-blade element momentum theory (BEM) with the improved tip loss correction introduced, a new aerodynamic model of wind turbine is developed. Using one high aerodynamic performance airfoil with 18% relat...Based on the 1D-blade element momentum theory (BEM) with the improved tip loss correction introduced, a new aerodynamic model of wind turbine is developed. Using one high aerodynamic performance airfoil with 18% relative thickness, one small wind turbine blade is designed and the distribution of the chord and twist angle of the blade are determined. According to the shape parameters of the blade, a method to set up the 3D model is presented by investigating the coordinate position of each section of the blade. Based on the fiber reinforced polymer (FRP) molding technology, the manufacturing process of wind turbine blade is put forward. Using fiber reinforced polymer, the wind turbine blades are manufactured by the mold making and layer process. A test platform and method of wind turbine output power are carried out, the output powers at different speeds of the wind turbine are obtained and discussed. The comparison between the designed and one existing wind turbine rotor is completed to show the reliability and superiority of the design and test method presented in this paper.展开更多
he thermal performance test of the horizontal coaxial double tube hot gas duct (HGD) with an internal thermal insulation for the 10MW High Temperature Reactor Test Module (HTR10) was conducted on a Helium Test Loop(HE...he thermal performance test of the horizontal coaxial double tube hot gas duct (HGD) with an internal thermal insulation for the 10MW High Temperature Reactor Test Module (HTR10) was conducted on a Helium Test Loop(HETL). The present paper deals with the technical feature of the HETL, the test section and the thermal performance test of the HGD. The HGD test section with a triple tube structure includes an inner heater, a HGD model and a coldhot gas mixer. A counterflow of cold and hot helium gas under the pressure of about 3.0 MPa and the minimum temperature of 100℃ in the annular passage and the maximum of 950℃ in the central tube of the HGD model was formed. The HGD model was undergone 20 times of pressure cycle test under the pressure ranging from 0.1 to 3.4 MPa, 18 times of the temperature cycle test under the temperature ranging from 100 to 950℃ and high temperature (700 to 950℃) helium flow test for a period of more than 350 hours. The effective thermal conductivity (λeff) of the internal insulation of the HGD was investigated experimentally. The relationship of the effective thermal conductivity with the average tmperature of the internal insulation layer is λeff(W/m/℃)=0.3512+0.0003T(℃). The test results indicate that the HGD model has good abilities to resist heat flux from the central tube to the annular passage, temperature variations, and pressure variations.展开更多
Background:When recommending avoidance of static stretching prior to athletic performance,authors and practitioners commonly refer to available systematic reviews.However,effect sizes(ES)in previous reviews were extra...Background:When recommending avoidance of static stretching prior to athletic performance,authors and practitioners commonly refer to available systematic reviews.However,effect sizes(ES)in previous reviews were extracted in major part from studies lacking control conditions and/or prepost testing designs.Also,currently available reviews conducted calculations without accounting for multiple study outcomes,with ES:0.03 to 0.10,which would commonly be classified as trivial.Methods:Since new meta-analytical software and controlled research articles have appeared since 2013,we revisited the available literatures and performed a multilevel meta-analysis using robust variance estimation of controlled prepost trials to provide updated evidence.Furthermore,previous research described reduced electromyography activity—also attributable to fatiguing training routines—as being responsible for decreased subsequent performance.The second part of this study opposed stretching and alternative interventions sufficient to induce general fatigue to examine whether static stretching induces higher performance losses compared to other exercise routines.Results:Including 83 studies with more than 400 ES from 2012 participants,our results indicate a significant,small ES for a static stretch-induced maximal strength loss(ES=0.21,p=0.003),with high magnitude ES(ES=0.84,p=0.004)for stretching durations≥60 s per bout when compared to passive controls.When opposed to active controls,the maximal strength loss ranges between ES:0.17 to0.28,p<0.001 and 0.040 with mostly no to small heterogeneity.However,stretching did not negatively influence athletic performance in general(when compared to both passive and active controls);in fact,a positive effect on subsequent jumping performance(ES=0.15,p=0.006)was found in adults.Conclusion:Regarding strength testing of isolated muscles(e.g.,leg extensions or calf raises),our results confirm previous findings.Nevertheless,since no(or even positive)effects could be found for athletic performance,our results do not support previous recommendations to exclude static stretching from warm-up routines prior to,for example,jumping or sprinting.展开更多
Taking a 2.5 liter accumulator with hydro-pneumatic suspension in a CXP1032 crane made in Germany as the research object and taking both the overall-road simulative test-bed and the control equipment made by the Schen...Taking a 2.5 liter accumulator with hydro-pneumatic suspension in a CXP1032 crane made in Germany as the research object and taking both the overall-road simulative test-bed and the control equipment made by the Schenck Company of Germany as the testing instrument, the structure performance and mechanism are theoretically clarified and the variation of gas states are obtained. This illustrates the accumulating and releasing process of a 2.5 liter accumulator in a 32t crane in the real condition. The preliminary volume and pressure of accumulator would directly affect the stiffness performance of the hydro-pneumatic suspension in a vehicle.展开更多
Along with the popularization and application of the steel bridge in China,due to the high modulus of asphalt concrete with good waterproof,anti-fatigue,anti-aging and good performance,asphalt concrete with high modul...Along with the popularization and application of the steel bridge in China,due to the high modulus of asphalt concrete with good waterproof,anti-fatigue,anti-aging and good performance,asphalt concrete with high modulus was widely used in steel bridge deck pavement,the test and comparative study of high modulus asphalt concrete were carried out based on two types of common high modulus asphalt concrete which include the casting type asphalt concrete and epoxy resin modified asphalt concrete,aims to further explore the performance features of the steel bridge deck with high modulus asphalt concrete,and provide help on the application of this asphalt concrete on the steel bridge deck.展开更多
To realize the data synchronization between the inertial measurement unit (IMU) and the global positioning system (GPS), the synchronization technology in the IMU/GPS integrated measurement system of vehicle motio...To realize the data synchronization between the inertial measurement unit (IMU) and the global positioning system (GPS), the synchronization technology in the IMU/GPS integrated measurement system of vehicle motion parameters is studied. According to the characteristics of the output signals of the IMU and the GPS, without the IMU synchronization signal, the synchronization circuit based on CPLD is designed and developed, which need not alter the configurations of the IMU and GPS. Experiments of measuring vehicle motion parameters, which rely on the synchronization circuit to realize IMU/GPS data synchronization, are made. The driving routes in experiments comprise a curve and a straight line. Experimental results show that the designed circuit can accurately measure the synchronization time difference and the IMU period, and can effectively solve the data synchronization in IMU/GPS integration. Furthermore, the IMU/GPS integrated measurement system based on the synchronization circuit can measure and calculate many vehicle motion parameters in high frequency mode.展开更多
The performance evaluation and chemical property analysis of the recycled warm mix asphalt (RWMA) binders containing 100% artificial reclaimed asphalt ( RA) are presented, and the combined effects of different p...The performance evaluation and chemical property analysis of the recycled warm mix asphalt (RWMA) binders containing 100% artificial reclaimed asphalt ( RA) are presented, and the combined effects of different percentages of the rejuvenator and warm mix additive (WMA) additives on RWMA binders are analyzed through laboratory tests. Three types of WMA additives ad one commercial rejuvenator named GST were selected to restore the artificial RA. The laboratory performace tests including the penetration test, softening test ad rotary, viscosity (RV) test were carried out. In addition, the Fourier transform infrared spectroscopy (FTIR) test was performed to explore the chemical property of RWMA binders. The results of the performance tests indicate that the rejuvenator GST has the ability to restore the artificial RA; choosing the optimum content of WMA additives and rejuvenator is the key to restoring 100% artificial RA, since the combined effects of them play an important role in determining the basic laboratory performance of RWMA binders. The FTIR tests show that the process of recycling mainly adjusts the chemical component of aged asphalt and no remarkable change is observed in the FTI1R spectra of RWMA binders in terms of chemical functional groups with the introduction of WMA additives.展开更多
A new type of a heat pump driven three-stage lithium bromide liquid desiccant deep dehumidification processor is presented,which can dehumidify the outdoor humid air to a rather dry state,even when there is no availab...A new type of a heat pump driven three-stage lithium bromide liquid desiccant deep dehumidification processor is presented,which can dehumidify the outdoor humid air to a rather dry state,even when there is no available indoor exhaust air.The test results show that with an outdoor air temperature of 28 to 31 ℃ and an outdoor air humidity ratio of 11 to 14 g/kg,the supply air temperature and the supply air humidity ratio are 1.6 to 2.6 ℃ and 2.6 to 3.0 g/kg,respectively,and the coefficient of performance(COP)of the processor is 1.8.During the test,a liquid pipeline link problem leading to mixture losses of hot and cold liquid desiccants is found.These pipelines are modified.Then,the performance of the modified processor is investigated.And the experimental results show that with an outdoor air temperature of 25 to 32 ℃ and an outdoor air humidity ratio of 18 to 21 g/kg,the supply air temperature and the supply air humidity ratio are 3.2 to 4.0 ℃ and 3.4 to 3.6 g/kg,respectively,and the COP is 2.8.Finally,a mathematical model of the processor is established.The comparison of the simulation results and the test results of the processor exhibits that the pipeline modification improves the performance by about 20%.展开更多
In order to find the test cube for industrial robots as specified by ISO 9283, a seed cube is grown up in an irregular working space of the robot, provided that the corners of the cube do not exceed the boundary of t...In order to find the test cube for industrial robots as specified by ISO 9283, a seed cube is grown up in an irregular working space of the robot, provided that the corners of the cube do not exceed the boundary of the working space. All possible cubes are searched, and the cube with the maximum volume is selected. The calculation examples show that the method of growth can be used for a variety of industrial robots. The method of growth can determine the test cube and test points of irregular working space according to ISO 9283, and can avoid blindness and randomness in the selection of test points.展开更多
The law governing the movement of particles in the centrifugal pump channel is complicated; thus, it is difficult to examine the solid-liquid two-phase turbulent flow in the pump. Consequently, the solid-liquid two-ph...The law governing the movement of particles in the centrifugal pump channel is complicated; thus, it is difficult to examine the solid-liquid two-phase turbulent flow in the pump. Consequently, the solid-liquid two-phase pump is designed based only on the unary theory. However, the obvious variety of centrifugal-pump internal flow appears because of the existence of solid phase, thus changing pump performance. Therefore, it is necessary to establish the flow characteristics of the solid-liquid two-phase pump. In the current paper, two-phase numerical simulation and centrifugal pump performance tests are carried out using different solid-particle diameters and two-phase mixture concentration conditions. Inner flow features are revealed by comparing the simulated and experimental results. The comparing results indicate that the influence of the solid-phase characteristics on centrifugal-pump performance is small when the flow rate is low, specifically when it is less than 2 m3/h. The maximum efficiency declines, and the best efficiency point tends toward the low flow-rate direction along with increasing solid-particle diameter and volume fraction, leading to reduced pump steady efficient range. The variation tendency of the pump head is basically consistent with that of the efficiency. The efficiency and head values of the two-phase mixture transportation are even larger than those of pure-water transportation under smaller particle diameter and volume fraction conditions at the low-flow-rate region. The change of the particle volume fraction has a greater effect on the pump performance than the change in the particle diameter. The experimental values are totally smaller than the simulated values. This research provides the theoretical foundation for the optimal design of centrifugal pump.展开更多
The current research of machine center accuracy in workspace mainly focuses on the poor geometric error subjected to thermal and gravity load while in operation, however, there are little researches focusing on the ef...The current research of machine center accuracy in workspace mainly focuses on the poor geometric error subjected to thermal and gravity load while in operation, however, there are little researches focusing on the effect of machine center elastic deformations on workspace volume. Therefore, a method called pre-deformation for assembly performance is presented. This method is technically based on the characteristics of machine tool assembly and collaborative computer-aided engineering (CAE) analysis. The research goal is to enhance assembly performance, including straightness, positioning, and angular errors, to realize the precision of the machine tool design. A vertical machine center is taken as an example to illustrate the proposed method. The concept of travel error is defined to obtain the law of the guide surface. The machine center assembly performance is analyzed under cold condition and thermal balance condition to establish the function of pre-deformation. Then, the guide surface in normal direction is processed with the pre-deformation function, and the machine tool assembly performance is measured using a laser interferometer. The measuring results show that the straightness deviation of the Z component in the Y-direction is 158.9% of the allowable value primarily because of the gravity of the spindle head, and the straightness of the X and Y components is minimal. When the machine tool is processed in pre-deformation, the straightness of the Z axis moving component is reduced to 91.2%. This research proposes a pre-deformation machine center assembly method which has sufficient capacity to improving assembly accuracy of machine centers.展开更多
In order to investigate the high-temperature performances of the asphalt pavement hot-applied sealant, as well as to reduce failures of the sealant pullout, the softening point test and the flow test(two existing met...In order to investigate the high-temperature performances of the asphalt pavement hot-applied sealant, as well as to reduce failures of the sealant pullout, the softening point test and the flow test(two existing methods for evaluating high-temperature performances) were conducted. It was found that both tests could not accurately reflect the adhesion performances of the sealant at high temperatures. For this purpose, the adhesion test for PSAT(pressure sensitive adhesive tape) has been taken as a reference to develop a device that is suitable for evaluating the adhesion performances, by modifying relevant test parameters according to the road conditions at high temperatures. Thirteen common sealants were tested in the modified adhesion test, softening point test and f low test. The experimental results show that no significant correlation(p〉0.05) exists between the adhesion value, softening point, adhesion value and flow value; while a significant correlation(p〈0.05) exists between the softening point and flow value. The modified adhesion test is efficient in distinguishing the hightemperature adhesion performances of different sealants, and can be used as a standard method for evaluating such performances.展开更多
With the advent of the 5G era,the design of electronic equipment is developing towards thinness,intelligence and multi-function,which requires higher cooling performance of the equipment.Micro-channel heat sink is pro...With the advent of the 5G era,the design of electronic equipment is developing towards thinness,intelligence and multi-function,which requires higher cooling performance of the equipment.Micro-channel heat sink is promising for the heat dissipation of super-thin electronic equipment.In this study,thermal resistance theoretical model of the micro-channel heat sink was first established.Then,fabrication process of the micro-channel heat sink was introduced.Subsequently,heat transfer performance of the fabricated micro-channel heat sink was tested through the developed testing platform.Results show that the developed micro-channel heat sink has more superior heat dissipation performance over conventional metal solid heat sink and it is well suited for high power LEDs application.Moreover,the micro-channel structures in the heat sink were optimized by orthogonal test.Based on the orthogonal optimization,heat dissipation performance of the micro-channel radiator was further improved.展开更多
Based on the operating principle and the electric property design of the passive hydrogen maser, the technology and test results of its space adaptability are carried out under the special launch conditions and space ...Based on the operating principle and the electric property design of the passive hydrogen maser, the technology and test results of its space adaptability are carried out under the special launch conditions and space environment. The various perturbations affecting the output frequency of such a standard used for the navigation satellite system are specified, such as magnetic field change, vibration, thermal vacuum and radiation. Through the adaptability technology in the aspects above, the security and reliability of the space passive hydrogen maser sufficiently fulfill the requirements of space operation. At present, the space passive hydrogen maser is working normally on board, indicating that the space adaptability satisfies the design requirement.展开更多
文摘Automotive-grade Complementary Metal-Oxide-Semiconductor(CMOS)sensors play a crucial role in automotive electronic systems,especially in the context of the rapid development of Advanced Driver Assistance Systems(ADAS)and autonomous driving technologies.Their performance is directly related to the safety and reliability of vehicles.However,automobiles will face a variety of complex environmental conditions during the actual operation,such as high temperature,low temperature,vibration,humidity changes,and light changes,which may have an impact on the performance of CMOS sensors.Therefore,it is of great significance to study the performance of automotive-grade CMOS sensors in different environments.
文摘Customizing applications through program configuration options has been proved by many open-source and commercial projects as one of the best practices in software engineering. However, traditional performance testing is not in synch with this industrial practice. Traditional performance testing techniques consider program inputs as the only external factor. It ignores the performance influence of configuration options. This study aims to stimulate research interest in performance testing in the context of configurable software systems by answering three research questions. That is, why it is necessary to conduct research in performance testing, what are the state-of-the-art techniques, and how do we conduct performance testing research in configurable software systems. In this study, we examine the unique characteristics and challenges of performance testing research in configurable software systems. We review and discuss research topics on the performance bug study, performance anti-patterns, program analysis, and performance testing. We share the research findings from the empirical study and outline the opening opportunities for new and advanced researchers to contribute to the research community.
文摘To realize automatic control of automobile transmission performance test stand Methods The automatic control technique of the lubricant temperature,the program- controll- edautomaticshifting of the transmission,the continuous adjusting of revolution speed and load, data-acquisition and data real-time processing were adopted.Results The lubricant temperature was controlled at the set temperature ±2℃.The automatic shifting of the trans- mission is simple,reliable and accurate.The automatic adjusting of load and rotation speed is rapidandaccurate,the torque divergence is ±1N·m,the rotation speed divergence is ±5r/min Conclusion The four kinds of techniques are applied into the automobile transmission perfor- mance test stand successfully. mancetest stand successfully.
基金Projects(51575115,51775122)supported by the National Natural Science Foundation of China
文摘In view of the limitations of solid metal heat sink in the heat dissipation of high power light emitting diode (LED), a kind of miniaturized phase change heat sink is developed for high power LED packaging. First, the fabrication process of miniaturized phase change heat sink is investigated, upon which all parts of the heat sink are fabricated including main-body and end-cover of the heat sink, the formation of three-dimensional boiling structures at the evaporation end, the sintering of the wick, and the encapsulation of high power LED phase change heat sink. Subsequently, with the assistance of the developed testing system, heat transfer performance of the heat sink is tested under the condition of natural convection, upon which the influence of thermal load and working medium on the heat transfer performance is investigated. Finally, the heat transfer performance of the developed miniaturized phase change heat sink is compared with that of metal solid heat sink. Results show that the developed miniaturized phase change heat sink presents much better heat transfer performance over traditional metal solid heat sink, and is suitable for the packaging of high power LED.
基金Project(2006AA06Z134) supported by the National High Technology Research and Development Program of ChinaProjects(50934006, 50904079) supported by the National Natural Science Foundation of China
文摘A set of water powered excavation test system was developed for the comprehensive performance testing and evaluation of water powered percussive rock drill indoors. The whole system contains hydraulic power section, electronic control system, test and data acquisition system, and assistant devices, such as guideway and drilling bench. Parameters of the water powered percussive rock drill can be obtained by analyzing testing data, which contain impact energy, front and back cavity pressure, pressure and flow in each working part, drilling velocity, frequency and energy efficiency etc. The system is applied to test the self-designed water powered percussive rock drill SYYG65. The parameters of water powered percussive rock drill with impact pressure of about 8.9 MPa are 58.93 J for impact energy, and 8.97% for energy efficiency, which prove the effectiveness of system.
文摘Three progressive stages of testing techniques are elaborated,which are en-tirely manual operating,taking separate instruments testing and computer program con-trolling.The testing method and principle are detailed based on the testing process formeteorological parameters,air pressure,air quality and rotating velocity.And every testingtechnique is analyzed.Finally, the technique outlook is viewed.All this plays a leading rolein development of the testing techniques.
基金Supported by the National Natural Science Foundation of China(No.51205430)Chongqing Foundation and Frontier Project(No.cstc2016jcyjA0448)Chongqing Municipal Education Commission Scientific Research Project(No.KJ1600628)
文摘Based on the 1D-blade element momentum theory (BEM) with the improved tip loss correction introduced, a new aerodynamic model of wind turbine is developed. Using one high aerodynamic performance airfoil with 18% relative thickness, one small wind turbine blade is designed and the distribution of the chord and twist angle of the blade are determined. According to the shape parameters of the blade, a method to set up the 3D model is presented by investigating the coordinate position of each section of the blade. Based on the fiber reinforced polymer (FRP) molding technology, the manufacturing process of wind turbine blade is put forward. Using fiber reinforced polymer, the wind turbine blades are manufactured by the mold making and layer process. A test platform and method of wind turbine output power are carried out, the output powers at different speeds of the wind turbine are obtained and discussed. The comparison between the designed and one existing wind turbine rotor is completed to show the reliability and superiority of the design and test method presented in this paper.
文摘he thermal performance test of the horizontal coaxial double tube hot gas duct (HGD) with an internal thermal insulation for the 10MW High Temperature Reactor Test Module (HTR10) was conducted on a Helium Test Loop(HETL). The present paper deals with the technical feature of the HETL, the test section and the thermal performance test of the HGD. The HGD test section with a triple tube structure includes an inner heater, a HGD model and a coldhot gas mixer. A counterflow of cold and hot helium gas under the pressure of about 3.0 MPa and the minimum temperature of 100℃ in the annular passage and the maximum of 950℃ in the central tube of the HGD model was formed. The HGD model was undergone 20 times of pressure cycle test under the pressure ranging from 0.1 to 3.4 MPa, 18 times of the temperature cycle test under the temperature ranging from 100 to 950℃ and high temperature (700 to 950℃) helium flow test for a period of more than 350 hours. The effective thermal conductivity (λeff) of the internal insulation of the HGD was investigated experimentally. The relationship of the effective thermal conductivity with the average tmperature of the internal insulation layer is λeff(W/m/℃)=0.3512+0.0003T(℃). The test results indicate that the HGD model has good abilities to resist heat flux from the central tube to the annular passage, temperature variations, and pressure variations.
文摘Background:When recommending avoidance of static stretching prior to athletic performance,authors and practitioners commonly refer to available systematic reviews.However,effect sizes(ES)in previous reviews were extracted in major part from studies lacking control conditions and/or prepost testing designs.Also,currently available reviews conducted calculations without accounting for multiple study outcomes,with ES:0.03 to 0.10,which would commonly be classified as trivial.Methods:Since new meta-analytical software and controlled research articles have appeared since 2013,we revisited the available literatures and performed a multilevel meta-analysis using robust variance estimation of controlled prepost trials to provide updated evidence.Furthermore,previous research described reduced electromyography activity—also attributable to fatiguing training routines—as being responsible for decreased subsequent performance.The second part of this study opposed stretching and alternative interventions sufficient to induce general fatigue to examine whether static stretching induces higher performance losses compared to other exercise routines.Results:Including 83 studies with more than 400 ES from 2012 participants,our results indicate a significant,small ES for a static stretch-induced maximal strength loss(ES=0.21,p=0.003),with high magnitude ES(ES=0.84,p=0.004)for stretching durations≥60 s per bout when compared to passive controls.When opposed to active controls,the maximal strength loss ranges between ES:0.17 to0.28,p<0.001 and 0.040 with mostly no to small heterogeneity.However,stretching did not negatively influence athletic performance in general(when compared to both passive and active controls);in fact,a positive effect on subsequent jumping performance(ES=0.15,p=0.006)was found in adults.Conclusion:Regarding strength testing of isolated muscles(e.g.,leg extensions or calf raises),our results confirm previous findings.Nevertheless,since no(or even positive)effects could be found for athletic performance,our results do not support previous recommendations to exclude static stretching from warm-up routines prior to,for example,jumping or sprinting.
文摘Taking a 2.5 liter accumulator with hydro-pneumatic suspension in a CXP1032 crane made in Germany as the research object and taking both the overall-road simulative test-bed and the control equipment made by the Schenck Company of Germany as the testing instrument, the structure performance and mechanism are theoretically clarified and the variation of gas states are obtained. This illustrates the accumulating and releasing process of a 2.5 liter accumulator in a 32t crane in the real condition. The preliminary volume and pressure of accumulator would directly affect the stiffness performance of the hydro-pneumatic suspension in a vehicle.
文摘Along with the popularization and application of the steel bridge in China,due to the high modulus of asphalt concrete with good waterproof,anti-fatigue,anti-aging and good performance,asphalt concrete with high modulus was widely used in steel bridge deck pavement,the test and comparative study of high modulus asphalt concrete were carried out based on two types of common high modulus asphalt concrete which include the casting type asphalt concrete and epoxy resin modified asphalt concrete,aims to further explore the performance features of the steel bridge deck with high modulus asphalt concrete,and provide help on the application of this asphalt concrete on the steel bridge deck.
文摘To realize the data synchronization between the inertial measurement unit (IMU) and the global positioning system (GPS), the synchronization technology in the IMU/GPS integrated measurement system of vehicle motion parameters is studied. According to the characteristics of the output signals of the IMU and the GPS, without the IMU synchronization signal, the synchronization circuit based on CPLD is designed and developed, which need not alter the configurations of the IMU and GPS. Experiments of measuring vehicle motion parameters, which rely on the synchronization circuit to realize IMU/GPS data synchronization, are made. The driving routes in experiments comprise a curve and a straight line. Experimental results show that the designed circuit can accurately measure the synchronization time difference and the IMU period, and can effectively solve the data synchronization in IMU/GPS integration. Furthermore, the IMU/GPS integrated measurement system based on the synchronization circuit can measure and calculate many vehicle motion parameters in high frequency mode.
基金The National Natural Science Foundation of China(No.50578031)
文摘The performance evaluation and chemical property analysis of the recycled warm mix asphalt (RWMA) binders containing 100% artificial reclaimed asphalt ( RA) are presented, and the combined effects of different percentages of the rejuvenator and warm mix additive (WMA) additives on RWMA binders are analyzed through laboratory tests. Three types of WMA additives ad one commercial rejuvenator named GST were selected to restore the artificial RA. The laboratory performace tests including the penetration test, softening test ad rotary, viscosity (RV) test were carried out. In addition, the Fourier transform infrared spectroscopy (FTIR) test was performed to explore the chemical property of RWMA binders. The results of the performance tests indicate that the rejuvenator GST has the ability to restore the artificial RA; choosing the optimum content of WMA additives and rejuvenator is the key to restoring 100% artificial RA, since the combined effects of them play an important role in determining the basic laboratory performance of RWMA binders. The FTIR tests show that the process of recycling mainly adjusts the chemical component of aged asphalt and no remarkable change is observed in the FTI1R spectra of RWMA binders in terms of chemical functional groups with the introduction of WMA additives.
基金The National Natural Science Foundation of China(No.50778094)
文摘A new type of a heat pump driven three-stage lithium bromide liquid desiccant deep dehumidification processor is presented,which can dehumidify the outdoor humid air to a rather dry state,even when there is no available indoor exhaust air.The test results show that with an outdoor air temperature of 28 to 31 ℃ and an outdoor air humidity ratio of 11 to 14 g/kg,the supply air temperature and the supply air humidity ratio are 1.6 to 2.6 ℃ and 2.6 to 3.0 g/kg,respectively,and the coefficient of performance(COP)of the processor is 1.8.During the test,a liquid pipeline link problem leading to mixture losses of hot and cold liquid desiccants is found.These pipelines are modified.Then,the performance of the modified processor is investigated.And the experimental results show that with an outdoor air temperature of 25 to 32 ℃ and an outdoor air humidity ratio of 18 to 21 g/kg,the supply air temperature and the supply air humidity ratio are 3.2 to 4.0 ℃ and 3.4 to 3.6 g/kg,respectively,and the COP is 2.8.Finally,a mathematical model of the processor is established.The comparison of the simulation results and the test results of the processor exhibits that the pipeline modification improves the performance by about 20%.
文摘In order to find the test cube for industrial robots as specified by ISO 9283, a seed cube is grown up in an irregular working space of the robot, provided that the corners of the cube do not exceed the boundary of the working space. All possible cubes are searched, and the cube with the maximum volume is selected. The calculation examples show that the method of growth can be used for a variety of industrial robots. The method of growth can determine the test cube and test points of irregular working space according to ISO 9283, and can avoid blindness and randomness in the selection of test points.
基金supported by National Natural Science Foundation of China(Grant No. 51076144)Zhejiang Provincial Key Science Foundation of China(Grant No. 2009C13006)
文摘The law governing the movement of particles in the centrifugal pump channel is complicated; thus, it is difficult to examine the solid-liquid two-phase turbulent flow in the pump. Consequently, the solid-liquid two-phase pump is designed based only on the unary theory. However, the obvious variety of centrifugal-pump internal flow appears because of the existence of solid phase, thus changing pump performance. Therefore, it is necessary to establish the flow characteristics of the solid-liquid two-phase pump. In the current paper, two-phase numerical simulation and centrifugal pump performance tests are carried out using different solid-particle diameters and two-phase mixture concentration conditions. Inner flow features are revealed by comparing the simulated and experimental results. The comparing results indicate that the influence of the solid-phase characteristics on centrifugal-pump performance is small when the flow rate is low, specifically when it is less than 2 m3/h. The maximum efficiency declines, and the best efficiency point tends toward the low flow-rate direction along with increasing solid-particle diameter and volume fraction, leading to reduced pump steady efficient range. The variation tendency of the pump head is basically consistent with that of the efficiency. The efficiency and head values of the two-phase mixture transportation are even larger than those of pure-water transportation under smaller particle diameter and volume fraction conditions at the low-flow-rate region. The change of the particle volume fraction has a greater effect on the pump performance than the change in the particle diameter. The experimental values are totally smaller than the simulated values. This research provides the theoretical foundation for the optimal design of centrifugal pump.
基金Supported by National Key Technology Support Program of China(Grant No.2011BAF11B03)National Science and Technology Major Projects of China(Grant No.2012ZX04010-011)
文摘The current research of machine center accuracy in workspace mainly focuses on the poor geometric error subjected to thermal and gravity load while in operation, however, there are little researches focusing on the effect of machine center elastic deformations on workspace volume. Therefore, a method called pre-deformation for assembly performance is presented. This method is technically based on the characteristics of machine tool assembly and collaborative computer-aided engineering (CAE) analysis. The research goal is to enhance assembly performance, including straightness, positioning, and angular errors, to realize the precision of the machine tool design. A vertical machine center is taken as an example to illustrate the proposed method. The concept of travel error is defined to obtain the law of the guide surface. The machine center assembly performance is analyzed under cold condition and thermal balance condition to establish the function of pre-deformation. Then, the guide surface in normal direction is processed with the pre-deformation function, and the machine tool assembly performance is measured using a laser interferometer. The measuring results show that the straightness deviation of the Z component in the Y-direction is 158.9% of the allowable value primarily because of the gravity of the spindle head, and the straightness of the X and Y components is minimal. When the machine tool is processed in pre-deformation, the straightness of the Z axis moving component is reduced to 91.2%. This research proposes a pre-deformation machine center assembly method which has sufficient capacity to improving assembly accuracy of machine centers.
基金Funded by the National Natural Science Foundation of China(Nos.51378242 and 51008146)the Transportation Industry Science and Technology Project of Beijing(No.kj2013-2-14)
文摘In order to investigate the high-temperature performances of the asphalt pavement hot-applied sealant, as well as to reduce failures of the sealant pullout, the softening point test and the flow test(two existing methods for evaluating high-temperature performances) were conducted. It was found that both tests could not accurately reflect the adhesion performances of the sealant at high temperatures. For this purpose, the adhesion test for PSAT(pressure sensitive adhesive tape) has been taken as a reference to develop a device that is suitable for evaluating the adhesion performances, by modifying relevant test parameters according to the road conditions at high temperatures. Thirteen common sealants were tested in the modified adhesion test, softening point test and f low test. The experimental results show that no significant correlation(p〉0.05) exists between the adhesion value, softening point, adhesion value and flow value; while a significant correlation(p〈0.05) exists between the softening point and flow value. The modified adhesion test is efficient in distinguishing the hightemperature adhesion performances of different sealants, and can be used as a standard method for evaluating such performances.
基金Supported by the National Natural Science Foundation of China(Grant Nos.51975135 and 52005422)Guangzhou Science and Technology Project(Grant No.201707010429)Special Innovation Projects of Universities in Guangdong Province(Grant No.2018GKTSCX085).
文摘With the advent of the 5G era,the design of electronic equipment is developing towards thinness,intelligence and multi-function,which requires higher cooling performance of the equipment.Micro-channel heat sink is promising for the heat dissipation of super-thin electronic equipment.In this study,thermal resistance theoretical model of the micro-channel heat sink was first established.Then,fabrication process of the micro-channel heat sink was introduced.Subsequently,heat transfer performance of the fabricated micro-channel heat sink was tested through the developed testing platform.Results show that the developed micro-channel heat sink has more superior heat dissipation performance over conventional metal solid heat sink and it is well suited for high power LEDs application.Moreover,the micro-channel structures in the heat sink were optimized by orthogonal test.Based on the orthogonal optimization,heat dissipation performance of the micro-channel radiator was further improved.
基金supported by the Next Generation of Beidou Navigation Satellite(the Space Passive Hydrogen Maser Technology,GFZX0301020104)
文摘Based on the operating principle and the electric property design of the passive hydrogen maser, the technology and test results of its space adaptability are carried out under the special launch conditions and space environment. The various perturbations affecting the output frequency of such a standard used for the navigation satellite system are specified, such as magnetic field change, vibration, thermal vacuum and radiation. Through the adaptability technology in the aspects above, the security and reliability of the space passive hydrogen maser sufficiently fulfill the requirements of space operation. At present, the space passive hydrogen maser is working normally on board, indicating that the space adaptability satisfies the design requirement.