A two-dimensional photonic crystal with a one-dimensional periodic dielectric background is proposed. The photonic band modulation effects due to the periodic background are investigated based on the plane wave expans...A two-dimensional photonic crystal with a one-dimensional periodic dielectric background is proposed. The photonic band modulation effects due to the periodic background are investigated based on the plane wave expansion method. We find that periodic modulation of the dielectric background greatly alters photonic band structures, especially for the E-polarization modes. The number, width and position of the photonic band gaps (PBGs) sensitively depend on the structure parameters (the layer thicknesses and dielectric constants) of the one-dimensional periodic background,展开更多
In this paper, the rogue wave solutions of the(2+1)-dimensional Myrzakulov–Lakshmanan(ML)-Ⅳ equation, which is described by five component nonlinear evolution equations, are studied on a periodic background. By usin...In this paper, the rogue wave solutions of the(2+1)-dimensional Myrzakulov–Lakshmanan(ML)-Ⅳ equation, which is described by five component nonlinear evolution equations, are studied on a periodic background. By using the Jacobian elliptic function expansion method, the Darboux transformation(DT) method and the nonlinearization of the Lax pair, two kinds of rogue wave solutions which are expressed by Jacobian elliptic functions dn and cn, are obtained.The relationship between these five kinds of potential is summarized systematically. Firstly, the periodic rogue wave solution of one potential is obtained, and then the periodic rogue wave solutions of the other four potentials are obtained directly. The solutions we find present the dynamic phenomena of higher-order nonlinear wave equations.展开更多
基金supported by the State Key Basic Research Program of China under Grant No.2006CB921607China-Australia Special Fund for Science and Technology
文摘A two-dimensional photonic crystal with a one-dimensional periodic dielectric background is proposed. The photonic band modulation effects due to the periodic background are investigated based on the plane wave expansion method. We find that periodic modulation of the dielectric background greatly alters photonic band structures, especially for the E-polarization modes. The number, width and position of the photonic band gaps (PBGs) sensitively depend on the structure parameters (the layer thicknesses and dielectric constants) of the one-dimensional periodic background,
基金supported by the National Natural Science Foundation of China (Grant No. 12 361 052)the Natural Science Foundation of Inner Mongolia Autonomous Region, China (Grant Nos. 2020LH01010, 2022ZD05)+2 种基金the Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region (Grant No. NMGIRT2414)the Fundamental Research Funds for the Inner Mongolia Normal University, China (Grant No. 2022JBTD007)the Key Laboratory of Infinite-dimensional Hamiltonian System and Its Algorithm Application (Inner Mongolia Normal University), and the Ministry of Education (Grant Nos. 2023KFZR01, 2023KFZR02)
文摘In this paper, the rogue wave solutions of the(2+1)-dimensional Myrzakulov–Lakshmanan(ML)-Ⅳ equation, which is described by five component nonlinear evolution equations, are studied on a periodic background. By using the Jacobian elliptic function expansion method, the Darboux transformation(DT) method and the nonlinearization of the Lax pair, two kinds of rogue wave solutions which are expressed by Jacobian elliptic functions dn and cn, are obtained.The relationship between these five kinds of potential is summarized systematically. Firstly, the periodic rogue wave solution of one potential is obtained, and then the periodic rogue wave solutions of the other four potentials are obtained directly. The solutions we find present the dynamic phenomena of higher-order nonlinear wave equations.