Currently,the mainstream vector network analyzer employs embedded computer module with a digital intermediate frequency(IF)board to form a high performance windows platform.Under this structure,the vector network anal...Currently,the mainstream vector network analyzer employs embedded computer module with a digital intermediate frequency(IF)board to form a high performance windows platform.Under this structure,the vector network analyzer needs a powerful encoding system to arbitrate the bus acquirement,which is usually realized by field-programmable gate array(FPGA)chip.The paper explores the shared bus design method of the digital signal processing(DSP)board in network analyzer.Firsty,it puts an emphasis on the system structure,and then the shared bus communication method is described in detail;Finally,the advantages of the shared bus communication mechanism are summanzed.展开更多
The double fetch problem occurs when the data is maliciously changed between two kernel reads of the supposedly same data, which can cause serious security problems in the kernel. Previous research focused on the doub...The double fetch problem occurs when the data is maliciously changed between two kernel reads of the supposedly same data, which can cause serious security problems in the kernel. Previous research focused on the double fetches between the kernel and user applications. In this paper, we present the first dedicated study of the double fetch problem between the kernel and peripheral devices (aka. the hardware double fetch). Operating systems communicate with peripheral devices by reading from and writing to the device mapped I/O (input and output) memory. Owing to the lack of effective validation of the attached hardware, compromised hardware could flip the data between two reads of the same I/O memory address, causing a double fetch problem. We propose a static pattern-matching approach to identify the hardware double fetches from the Linux kernel. Our approach can analyze the entire kernel without relying on the corresponding hardware. The results are categorized and each category is analyzed using case studies to discuss the possibility of causing bugs. We also find four previously unknown double-fetch vulnerabilities, which have been confirmed and fixed after reporting them to the maintainers.展开更多
文摘Currently,the mainstream vector network analyzer employs embedded computer module with a digital intermediate frequency(IF)board to form a high performance windows platform.Under this structure,the vector network analyzer needs a powerful encoding system to arbitrate the bus acquirement,which is usually realized by field-programmable gate array(FPGA)chip.The paper explores the shared bus design method of the digital signal processing(DSP)board in network analyzer.Firsty,it puts an emphasis on the system structure,and then the shared bus communication method is described in detail;Finally,the advantages of the shared bus communication mechanism are summanzed.
文摘The double fetch problem occurs when the data is maliciously changed between two kernel reads of the supposedly same data, which can cause serious security problems in the kernel. Previous research focused on the double fetches between the kernel and user applications. In this paper, we present the first dedicated study of the double fetch problem between the kernel and peripheral devices (aka. the hardware double fetch). Operating systems communicate with peripheral devices by reading from and writing to the device mapped I/O (input and output) memory. Owing to the lack of effective validation of the attached hardware, compromised hardware could flip the data between two reads of the same I/O memory address, causing a double fetch problem. We propose a static pattern-matching approach to identify the hardware double fetches from the Linux kernel. Our approach can analyze the entire kernel without relying on the corresponding hardware. The results are categorized and each category is analyzed using case studies to discuss the possibility of causing bugs. We also find four previously unknown double-fetch vulnerabilities, which have been confirmed and fixed after reporting them to the maintainers.