Objective: To test the ability of both zinc oxide nanoparticles(Zn ONPs) and silver nanoparticles(SNPs) to ameliorate the oxidative stress resulted from diabetes in diabetic rats.Methods: Fifty male albino rats were u...Objective: To test the ability of both zinc oxide nanoparticles(Zn ONPs) and silver nanoparticles(SNPs) to ameliorate the oxidative stress resulted from diabetes in diabetic rats.Methods: Fifty male albino rats were used; ten of them were served as control group and forty, as the experiment group, were injected with streptozotocin at the single intraperitoneal dose of 100 mg/kg. Then, the experiment group was subdivided into, diabetic,diabetic + Zn ONPs, diabetic + SNPs and diabetic + insulin groups. The activities and m RNA expression levels of superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase were determined in brain tissues. Malondialdehyde, total antioxidant capacity, zinc and silver concentrations were estimated in the brain tissues of all rats.Results: A significant increase in the activities and m RNA expression levels of superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase was shown.Malondialdehyde levels were significantly decreased while there was a significant increase in the zinc, silver concentrations and total antioxidant capacity in brain of Zn ONPs and SNPs treated rats, compared with diabetic or diabetic + insulin group and their control group.Conclusions: Zn ONPs and SNPs can be used to ameliorate the oxidative stress in brain resulted from diabetes mellitus.展开更多
Background The effects of triterpenic acid from Prunella vulgaris L. (TAP) on diabetes and its mechanism are uncertain. The aim of this study was to investigate the effects of TAP on antihyperglycemic, antioxidant, ...Background The effects of triterpenic acid from Prunella vulgaris L. (TAP) on diabetes and its mechanism are uncertain. The aim of this study was to investigate the effects of TAP on antihyperglycemic, antioxidant, and pancreas-protective in streptozotozin (STZ)-diabetic rats. Methods The diabetic model was produced by injection of 60 mg/kg STZ. Blood was drawn from the tail vein of rats after 72 hours. Rats with blood glucose 〉16.7 mmol/L were considered diabetic. Diabetic rats were randomly divided into four groups: (1) Diabetes rat (STZ), (2) Diabetic rats treated with 50 mg/kg of triterpenic acid from Prunella vulgaris L (STZ+TAP50), (3) Diabetic rats treated with 100 mg/kg TAP (STZ+TAP100), and (4) Diabetic rats treated with 200 mg/kg TAP (STZ+TAP200). Normal rats (n=10) acted as the control group (NC). TAP was administered by the intragastric route once each day for six weeks. Body weight and the concentration of blood glucose (BG) were measured after three and six weeks. Fructosamine (FMN), malondialdehyde (MDA), and nitric oxide (NO), and the activities of nitric oxide synthase (NOS) and superoxide dismutase (SOD) in serum were determined after six weeks using commercially available kits following the manufacturer's instructions. Pathologic changes in pancreatic β-cells were also investigated by microscopic examination after hematoxylin-eosin (HE) staining. The level of SOD mRNA in pancreatic β-cells was measured by polymerase chain reaction (PCR). Results The levels of BG, FMN, NO, and MDA and the activities of NOS in serum in the four diabetes groups were significantly increased compared with the control group (P 〈0.01). The activity of SOD in serum and the body weight was significantly decreased compared with the control group (P 〈0.01). After administration of TAP to diabetic rats for six weeks, the body weight and the levels of BG, FMN, MDA, NO and the activity of NOS in serum decreased significantly compared with the STZ group in a dose-dependent manner. The activity of SOD in serum and body weight increased significantly compared with the STZ group in a dose-dependent manner. In addition, diabetic rats showed a significant decrease in SOD mRNA expression in pancreatic β cells. However, these changes were reversed by TAP. Histopathological examination also showed the protective effect of TAP on pancreatic β cells. Conclusions Triterpenic acid from Prunella vulgaris L. has an anti-diabetic effect, by controlling blood glucose and antioxidants, and has a protective effect on the pancreas.展开更多
文摘Objective: To test the ability of both zinc oxide nanoparticles(Zn ONPs) and silver nanoparticles(SNPs) to ameliorate the oxidative stress resulted from diabetes in diabetic rats.Methods: Fifty male albino rats were used; ten of them were served as control group and forty, as the experiment group, were injected with streptozotocin at the single intraperitoneal dose of 100 mg/kg. Then, the experiment group was subdivided into, diabetic,diabetic + Zn ONPs, diabetic + SNPs and diabetic + insulin groups. The activities and m RNA expression levels of superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase were determined in brain tissues. Malondialdehyde, total antioxidant capacity, zinc and silver concentrations were estimated in the brain tissues of all rats.Results: A significant increase in the activities and m RNA expression levels of superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase was shown.Malondialdehyde levels were significantly decreased while there was a significant increase in the zinc, silver concentrations and total antioxidant capacity in brain of Zn ONPs and SNPs treated rats, compared with diabetic or diabetic + insulin group and their control group.Conclusions: Zn ONPs and SNPs can be used to ameliorate the oxidative stress in brain resulted from diabetes mellitus.
文摘Background The effects of triterpenic acid from Prunella vulgaris L. (TAP) on diabetes and its mechanism are uncertain. The aim of this study was to investigate the effects of TAP on antihyperglycemic, antioxidant, and pancreas-protective in streptozotozin (STZ)-diabetic rats. Methods The diabetic model was produced by injection of 60 mg/kg STZ. Blood was drawn from the tail vein of rats after 72 hours. Rats with blood glucose 〉16.7 mmol/L were considered diabetic. Diabetic rats were randomly divided into four groups: (1) Diabetes rat (STZ), (2) Diabetic rats treated with 50 mg/kg of triterpenic acid from Prunella vulgaris L (STZ+TAP50), (3) Diabetic rats treated with 100 mg/kg TAP (STZ+TAP100), and (4) Diabetic rats treated with 200 mg/kg TAP (STZ+TAP200). Normal rats (n=10) acted as the control group (NC). TAP was administered by the intragastric route once each day for six weeks. Body weight and the concentration of blood glucose (BG) were measured after three and six weeks. Fructosamine (FMN), malondialdehyde (MDA), and nitric oxide (NO), and the activities of nitric oxide synthase (NOS) and superoxide dismutase (SOD) in serum were determined after six weeks using commercially available kits following the manufacturer's instructions. Pathologic changes in pancreatic β-cells were also investigated by microscopic examination after hematoxylin-eosin (HE) staining. The level of SOD mRNA in pancreatic β-cells was measured by polymerase chain reaction (PCR). Results The levels of BG, FMN, NO, and MDA and the activities of NOS in serum in the four diabetes groups were significantly increased compared with the control group (P 〈0.01). The activity of SOD in serum and the body weight was significantly decreased compared with the control group (P 〈0.01). After administration of TAP to diabetic rats for six weeks, the body weight and the levels of BG, FMN, MDA, NO and the activity of NOS in serum decreased significantly compared with the STZ group in a dose-dependent manner. The activity of SOD in serum and body weight increased significantly compared with the STZ group in a dose-dependent manner. In addition, diabetic rats showed a significant decrease in SOD mRNA expression in pancreatic β cells. However, these changes were reversed by TAP. Histopathological examination also showed the protective effect of TAP on pancreatic β cells. Conclusions Triterpenic acid from Prunella vulgaris L. has an anti-diabetic effect, by controlling blood glucose and antioxidants, and has a protective effect on the pancreas.