BACKGROUND Acute liver failure(ALF)has a high mortality with widespread hepatocyte death involving ferroptosis and pyroptosis.The silent information regulator sirtuin 1(SIRT1)-mediated deacetylation affects multiple b...BACKGROUND Acute liver failure(ALF)has a high mortality with widespread hepatocyte death involving ferroptosis and pyroptosis.The silent information regulator sirtuin 1(SIRT1)-mediated deacetylation affects multiple biological processes,including cellular senescence,apoptosis,sugar and lipid metabolism,oxidative stress,and inflammation.AIM To investigate the association between ferroptosis and pyroptosis and the upstream regulatory mechanisms.METHODS This study included 30 patients with ALF and 30 healthy individuals who underwent serum alanine aminotransferase(ALT)and aspartate aminotransferase(AST)testing.C57BL/6 mice were also intraperitoneally pretreated with SIRT1,p53,or glutathione peroxidase 4(GPX4)inducers and inhibitors and injected with lipopolysaccharide(LPS)/D-galactosamine(D-GalN)to induce ALF.Gasdermin D(GSDMD)^(-/-)mice were used as an experimental group.Histological changes in liver tissue were monitored by hematoxylin and eosin staining.ALT,AST,glutathione,reactive oxygen species,and iron levels were measured using commercial kits.Ferroptosis-and pyroptosis-related protein and mRNA expression was detected by western blot and quantitative real-time polymerase chain reaction.SIRT1,p53,and GSDMD were assessed by immunofluorescence analysis.RESULTS Serum AST and ALT levels were elevated in patients with ALF.SIRT1,solute carrier family 7a member 11(SLC7A11),and GPX4 protein expression was decreased and acetylated p5,p53,GSDMD,and acyl-CoA synthetase long-chain family member 4(ACSL4)protein levels were elevated in human ALF liver tissue.In the p53 and ferroptosis inhibitor-treated and GSDMD^(-/-)groups,serum interleukin(IL)-1β,tumour necrosis factor alpha,IL-6,IL-2 and C-C motif ligand 2 levels were decreased and hepatic impairment was mitigated.In mice with GSDMD knockout,p53 was reduced,GPX4 was increased,and ferroptotic events(depletion of SLC7A11,elevation of ACSL4,and iron accumulation)were detected.In vitro,knockdown of p53 and overexpression of GPX4 reduced AST and ALT levels,the cytostatic rate,and GSDMD expression,restoring SLC7A11 depletion.Moreover,SIRT1 agonist and overexpression of SIRT1 alleviated acute liver injury and decreased iron deposition compared with results in the model group,accompanied by reduced p53,GSDMD,and ACSL4,and increased SLC7A11 and GPX4.Inactivation of SIRT1 exacerbated ferroptotic and pyroptotic cell death and aggravated liver injury in LPS/D-GalNinduced in vitro and in vivo models.CONCLUSION SIRT1 activation attenuates LPS/D-GalN-induced ferroptosis and pyroptosis by inhibiting the p53/GPX4/GSDMD signaling pathway in ALF.展开更多
Recent studies have shown that chlorogenic acid(CGA),which is present in coffee,has protective effects on the nervous system.However,its role in neonatal hypoxic-ischemic brain injury remains unclear.In this study,we ...Recent studies have shown that chlorogenic acid(CGA),which is present in coffee,has protective effects on the nervous system.However,its role in neonatal hypoxic-ischemic brain injury remains unclear.In this study,we established a newborn mouse model of hypoxic-ischemic brain injury using a modified Rice-Vannucci method and performed intraperitoneal injection of CGA.We found that CGA intervention effectively reduced the volume of cerebral infarct,alleviated cerebral edema,restored brain tissue structure after injury,and promoted axon growth in injured brain tissue.Moreover,CGA pretreatment alleviated oxygen-glucose deprivation damage of primary neurons and promoted neuron survival.In addition,changes in ferroptosis-related proteins caused by hypoxic-ischemic brain injury were partially reversed by CGA.Furthermore,CGA intervention upregulated the expression of the key ferroptosis factor glutathione peroxidase 4 and its upstream glutamate/cystine antiporter related factors SLC7A11 and SLC3A2.In summary,our findings reveal that CGA alleviates hypoxic-ischemic brain injury in neonatal mice by reducing ferroptosis,providing new ideas for the treatment of neonatal hypoxic-ischemic brain injury.展开更多
Tumor microenvironment(TME)with the particular features of severe hypoxia,insufficient endogenous H2O2,and overexpression of glutathione(GSH)markedly reduced the antitumor efficacy of monotherapy.Herein,a TME-responsi...Tumor microenvironment(TME)with the particular features of severe hypoxia,insufficient endogenous H2O2,and overexpression of glutathione(GSH)markedly reduced the antitumor efficacy of monotherapy.Herein,a TME-responsive multifunctional nanoplatform(Bi2S3@Bi@PDA-HA/Art NRs)was presented for synergistic photothermal therapy(PTT),chemodynamic therapy(CDT),and photodynamic therapy(PDT)to achieve better therapeutic outcomes.The Z-scheme heterostructured bismuth sulfide@bismuth nanorods(Bi2S3@Bi NRs)guaranteed excellent photothermal performance of the nanoplatform.Moreover,its ability to produce O2 and reactive oxygen species(ROS)synchronously could relieve tumor hypoxia and improve PDT outcomes.The densely coated polydopamine/ammonium bicarbonate(PDA/ABC)and hyaluronic acid(HA)layers on the surface of the nanoplatform enhanced the cancer-targeting capacity and induced the acidic TME-triggered in situ“bomb-like”release of Art.The CDT treatment was achieved by activating the released Art through intracellular Fe2+ions in an H2O2-independent manner.Furthermore,decreasing the glutathione peroxidase 4(GPX4)levels by Art could also increase the PDT efficiency of Bi2S3@Bi NRs.Owing to the synergistic effect,this nanoplatform displayed improved antitumor efficacy with minimal toxicity both in vitro and in vivo.Our design sheds light on the application of phototherapy combined with the traditional Chinese medicine monomer-artesunate in treating the hypoxic tumor.展开更多
Glutathione peroxidase (GPx) is an antioxidant that plays an important role in the maintenance of male fertility. The aim of this study was to compare the profile of enzymatic activity of glutathione peroxidase in the...Glutathione peroxidase (GPx) is an antioxidant that plays an important role in the maintenance of male fertility. The aim of this study was to compare the profile of enzymatic activity of glutathione peroxidase in the seminal plasma of normozoosperm and those of pathological sperm. Thus, the activity of glutathione peroxidase was determined in the seminal plasma of 20 normozoosperms, 9 azoosperms and 31 oligoasthenoteratozoosperms. It was 37.58 ± 3.14 U/L in normozoosperms, 39.39 ± 2.27 U/L in oligoasthenoteratozoosperms, and 29.77 ± 2.62 U/L in azoosperms. The mean GPx enzyme activity of normozoosperms did not differ significantly from that of oligoasthenoteratozoosperms and azoosperms. In contrast, comparison of enzyme activity between abnormal sperms gave a significant difference. This study showed that glutathione peroxidase enzymatic activity is not related to sperm quality.展开更多
This study aims to analyze the clinical significance and mechanism of nuclear factor erythroid 2-related factor 2(NRF2)and glutathione peroxidase 4(GPX4)in primary hepatic carcinoma(PHC).Methods:The expression of NRF2...This study aims to analyze the clinical significance and mechanism of nuclear factor erythroid 2-related factor 2(NRF2)and glutathione peroxidase 4(GPX4)in primary hepatic carcinoma(PHC).Methods:The expression of NRF2 and GPX4 in peripheral blood of patients with PHC was determined to analyze the diagnostic value of the two combined for PHC.The prognostic significance of NRF2 and GPX4 was evaluated by 3-year followup.Human liver epithelial cells THLE-2 and human hepatocellular carcinoma cells HepG2 were purchased,and the expression of NRF2 and GPX4 in the cells was determined.NRF2 and GPX4 aberrant expression vectors were constructed and transfected into HepG2,and changes in cell proliferation and invasion capabilities were observed.Results:The expression of NRF2 and GPX4 in patients with PHC was higher than that in patients with LC or VH(p<0.05),and the two indicators combined was excellent in diagnosing PHC.Moreover,patients with high expression of NRF2 and GPX4 had a higher risk of death(p<0.05).In in vitro experiments,both NRF2 and GPX4 expression was elevated in HepG2(p<0.05).HepG2 activity was enhanced by increasing the expression of the two,vice versa(p<0.05).Conclusion:NRF2 and GPX4 combined is excellent in diagnosing PHC,and promotes the malignant development of PHC.展开更多
Organoseleniums are a class of compounds attracting attention across the globe owing to their Glutathione peroxidase(GPx)mimicry,which confers on them a strong antioxidant activity.Diphenyl diselenide(DPDS)is an Organ...Organoseleniums are a class of compounds attracting attention across the globe owing to their Glutathione peroxidase(GPx)mimicry,which confers on them a strong antioxidant activity.Diphenyl diselenide(DPDS)is an Organoselenium whose GPx mimetic property has been suggested to rely on the oxidation of non-protein or protein thiols critical to the activities of some sulfhydryl enzymes.This study,therefore investigated the GPx mimic/antioxidant property of DPDS as well as the role of thiols of two key sulfhydryl enzymes,cerebral Na^(+)/K^(+)-ATPase(sodium pump)and hepatic delta-aminolevulinic acid dehydratase(δ-ALAD)in the GPx mimicry of DPDS.Albino Wistar rats were euthanized,and the liver and brain were removed and used to assay for the effect of DPDS on lipid peroxidation induced by two prooxidants[Fe2^(+)(10μM)and H2O2,(1 mM)]as well as the activities of the sulfhydryl enzymes.The results revealed that DPDS profoundly(P<0.05)counteracted Fe2^(+)and H2O2-induced lipid peroxidation in the rats’hepatic and cerebral tissues.Furthermore,the results of assay systems for lipid peroxidation and sodium pump revealed that DPDS inhibited Na^(+)/K^(+)-ATPase and lipid peroxidation in the brain tissue homogenates in the same reaction system.A similar result was obtained in the assay system for lipid peroxidation and hepaticδ-ALAD as DPDS simultaneously inhibited the enzyme’s activity and lipid peroxidation.This suggests that the GPx mimetic property of DPDS may be linked to the enzymes’loss of activity,which further validates the suggestions that the enzymes’inhibition,as well as the antioxidant action of DPDS,rely on the oxidation of critical thiols of the enzymes.However,the GPx mimicry of DPDS should be investigated in the presence of thiol-blocking or oxidizing agents in biological systems in order to further ascertain the role of protein thiols.展开更多
Background:The monkey pox virus is caused by monkey pox(MPX),which is similar to both smallpox and cowpox.Near tropical rain forests,it usually occurs in isolated communities in Central and West Africa.The monkey pox ...Background:The monkey pox virus is caused by monkey pox(MPX),which is similar to both smallpox and cowpox.Near tropical rain forests,it usually occurs in isolated communities in Central and West Africa.The monkey pox virus,a member of the family Poxviridae and belongs to the genus Orthopoxvirus.Close contact with infected animals,sick people,or contaminated inanimate things can cause the virus to spread to humans.The illness typically takes 7 to 14 days to incubate and is characterized by fever,headache,lethargy,myalgia,generalized body pains,lymph node swelling,and skin lesions.Given the variety of illnesses that can result in skin rashes,it could be challenging to differentiate monkey pox solely based on clinical presentation,particularly for patients with an uncommon look.Objective:The main objective of the study is to evaluate public perceptions regarding the emerging human monkey pox disease and vaccination.Methods:The study was conducted using a cross-sectional study design.The sample size was 472 participants;however,10 questionnaires were excluded because of invalid data.The 462 questionnaires were included by expert validation from the general public of Rawalpindi and Islamabad,Pakistan.The data were analyzed using Chi-squared tests.Results:This questionnaire-based cross-sectional study was conducted from 15 Sep to 15 Oct 2022.The participants’perceptions,knowledge,and attitudes were collected via a 24-item-based questionnaire survey.The survey was based on 462 participants,196(42.4%)were females,and 266(57.6%)were males.The results reveal that out of 462 participants,clinical symptoms of monkey pox disease 82.7%(382),complications of monkey pox disease 81.2%(375),lymphadenopathy(swollen lymph nodes)is one clinical feature that could be used to differentiate between monkey pox and smallpox 81.2%(375)and monkey pox is common in Western and Central Africa 24.2%(112).Furthermore,the majority of participants(P≤0.05)agreed that health officials should start a vaccination campaign to combat monkey pox.Regarding preventive measures and vaccination campaigns,health officials should take public preventive measures 79.7%(368)and health officials start a vaccination campaign against monkey pox disease 56.3%(260).Conclusion:There was a significant difference seen in the public perception regarding monkey pox preventive measures and vaccination.The International health authorities must take priority-based preventative measures to prevent the spread of monkey pox disease around the world.展开更多
[Objective] This work was aimed to explore the mechanism of Hg2+ toxicity on plants.[Method]Activities of peroxidase(POD),catalase(CAT)and superoxide dismutase(SOD)were investigated in wheat(Triticum aestivum L.)seedl...[Objective] This work was aimed to explore the mechanism of Hg2+ toxicity on plants.[Method]Activities of peroxidase(POD),catalase(CAT)and superoxide dismutase(SOD)were investigated in wheat(Triticum aestivum L.)seedlings under Hg2+ stress at different concentrations.[Result]① There were no obvious effects on the growth of seedlings when the concentration of Hg2+ was lower than 0.10 mmol/L.However,toxic effects on the growth of seedling were observed when the concentration of Hg2+ was higher than 0.10 mmol/L.② Different tissues showed different resistant ability in response to Hg2+ stress.The leaves and roots of wheat seedlings were more insensitive to Hg2+ toxicity.③ CAT was more sensitive to Hg2+ stress compared to POD and SOD.[Conclusion]The toxic effect was related to the concentration of Hg2+(0.10 mmol/L).The higher concentration of Hg2+ could affect the expression of POD,CAT,and SOD isozymes in the leaves,roots of wheat seedlings and germinated seeds,which further affect the normal metabolism of membrane lipid and inhibit the growth of wheat seedlings at last.展开更多
基金Supported by National Natural Science Foundation of China,No.82060123Doctoral Start-up Fund of Affiliated Hospital of Guizhou Medical University,No.gysybsky-2021-28+1 种基金Fund Project of Guizhou Provincial Science and Technology Department,No.[2020]1Y299Guizhou Provincial Health Commission,No.gzwjk2019-1-082。
文摘BACKGROUND Acute liver failure(ALF)has a high mortality with widespread hepatocyte death involving ferroptosis and pyroptosis.The silent information regulator sirtuin 1(SIRT1)-mediated deacetylation affects multiple biological processes,including cellular senescence,apoptosis,sugar and lipid metabolism,oxidative stress,and inflammation.AIM To investigate the association between ferroptosis and pyroptosis and the upstream regulatory mechanisms.METHODS This study included 30 patients with ALF and 30 healthy individuals who underwent serum alanine aminotransferase(ALT)and aspartate aminotransferase(AST)testing.C57BL/6 mice were also intraperitoneally pretreated with SIRT1,p53,or glutathione peroxidase 4(GPX4)inducers and inhibitors and injected with lipopolysaccharide(LPS)/D-galactosamine(D-GalN)to induce ALF.Gasdermin D(GSDMD)^(-/-)mice were used as an experimental group.Histological changes in liver tissue were monitored by hematoxylin and eosin staining.ALT,AST,glutathione,reactive oxygen species,and iron levels were measured using commercial kits.Ferroptosis-and pyroptosis-related protein and mRNA expression was detected by western blot and quantitative real-time polymerase chain reaction.SIRT1,p53,and GSDMD were assessed by immunofluorescence analysis.RESULTS Serum AST and ALT levels were elevated in patients with ALF.SIRT1,solute carrier family 7a member 11(SLC7A11),and GPX4 protein expression was decreased and acetylated p5,p53,GSDMD,and acyl-CoA synthetase long-chain family member 4(ACSL4)protein levels were elevated in human ALF liver tissue.In the p53 and ferroptosis inhibitor-treated and GSDMD^(-/-)groups,serum interleukin(IL)-1β,tumour necrosis factor alpha,IL-6,IL-2 and C-C motif ligand 2 levels were decreased and hepatic impairment was mitigated.In mice with GSDMD knockout,p53 was reduced,GPX4 was increased,and ferroptotic events(depletion of SLC7A11,elevation of ACSL4,and iron accumulation)were detected.In vitro,knockdown of p53 and overexpression of GPX4 reduced AST and ALT levels,the cytostatic rate,and GSDMD expression,restoring SLC7A11 depletion.Moreover,SIRT1 agonist and overexpression of SIRT1 alleviated acute liver injury and decreased iron deposition compared with results in the model group,accompanied by reduced p53,GSDMD,and ACSL4,and increased SLC7A11 and GPX4.Inactivation of SIRT1 exacerbated ferroptotic and pyroptotic cell death and aggravated liver injury in LPS/D-GalNinduced in vitro and in vivo models.CONCLUSION SIRT1 activation attenuates LPS/D-GalN-induced ferroptosis and pyroptosis by inhibiting the p53/GPX4/GSDMD signaling pathway in ALF.
基金supported by the National Natural Science Foundation of China,No.81971425the Natural Science Foundation of Zhejiang Province,No.LY20H040002(both to XQF).
文摘Recent studies have shown that chlorogenic acid(CGA),which is present in coffee,has protective effects on the nervous system.However,its role in neonatal hypoxic-ischemic brain injury remains unclear.In this study,we established a newborn mouse model of hypoxic-ischemic brain injury using a modified Rice-Vannucci method and performed intraperitoneal injection of CGA.We found that CGA intervention effectively reduced the volume of cerebral infarct,alleviated cerebral edema,restored brain tissue structure after injury,and promoted axon growth in injured brain tissue.Moreover,CGA pretreatment alleviated oxygen-glucose deprivation damage of primary neurons and promoted neuron survival.In addition,changes in ferroptosis-related proteins caused by hypoxic-ischemic brain injury were partially reversed by CGA.Furthermore,CGA intervention upregulated the expression of the key ferroptosis factor glutathione peroxidase 4 and its upstream glutamate/cystine antiporter related factors SLC7A11 and SLC3A2.In summary,our findings reveal that CGA alleviates hypoxic-ischemic brain injury in neonatal mice by reducing ferroptosis,providing new ideas for the treatment of neonatal hypoxic-ischemic brain injury.
基金Financial support was provided by the National Natural Science Foundation of China(grant no.21807024)the Youth Top-notch Talents Supporting Plan of Hebei Province(QNBJ19004)+4 种基金Scientific Research Foundation of Hebei Province for the Returned Overseas Chinese Scholars(C20220508)the Science and Technology Project of Hebei Education Department(no.ZD2021072)the Central Guidance on Local Science and Technology Development Fund of Hebei Province(226Z2601G)Science Fun for Creative Research Groups of Natural Science Foundation of Hebei Province(no.H2020206474)supported by the Postdoctoral Fund of Hebei Medical University.
文摘Tumor microenvironment(TME)with the particular features of severe hypoxia,insufficient endogenous H2O2,and overexpression of glutathione(GSH)markedly reduced the antitumor efficacy of monotherapy.Herein,a TME-responsive multifunctional nanoplatform(Bi2S3@Bi@PDA-HA/Art NRs)was presented for synergistic photothermal therapy(PTT),chemodynamic therapy(CDT),and photodynamic therapy(PDT)to achieve better therapeutic outcomes.The Z-scheme heterostructured bismuth sulfide@bismuth nanorods(Bi2S3@Bi NRs)guaranteed excellent photothermal performance of the nanoplatform.Moreover,its ability to produce O2 and reactive oxygen species(ROS)synchronously could relieve tumor hypoxia and improve PDT outcomes.The densely coated polydopamine/ammonium bicarbonate(PDA/ABC)and hyaluronic acid(HA)layers on the surface of the nanoplatform enhanced the cancer-targeting capacity and induced the acidic TME-triggered in situ“bomb-like”release of Art.The CDT treatment was achieved by activating the released Art through intracellular Fe2+ions in an H2O2-independent manner.Furthermore,decreasing the glutathione peroxidase 4(GPX4)levels by Art could also increase the PDT efficiency of Bi2S3@Bi NRs.Owing to the synergistic effect,this nanoplatform displayed improved antitumor efficacy with minimal toxicity both in vitro and in vivo.Our design sheds light on the application of phototherapy combined with the traditional Chinese medicine monomer-artesunate in treating the hypoxic tumor.
文摘Glutathione peroxidase (GPx) is an antioxidant that plays an important role in the maintenance of male fertility. The aim of this study was to compare the profile of enzymatic activity of glutathione peroxidase in the seminal plasma of normozoosperm and those of pathological sperm. Thus, the activity of glutathione peroxidase was determined in the seminal plasma of 20 normozoosperms, 9 azoosperms and 31 oligoasthenoteratozoosperms. It was 37.58 ± 3.14 U/L in normozoosperms, 39.39 ± 2.27 U/L in oligoasthenoteratozoosperms, and 29.77 ± 2.62 U/L in azoosperms. The mean GPx enzyme activity of normozoosperms did not differ significantly from that of oligoasthenoteratozoosperms and azoosperms. In contrast, comparison of enzyme activity between abnormal sperms gave a significant difference. This study showed that glutathione peroxidase enzymatic activity is not related to sperm quality.
文摘This study aims to analyze the clinical significance and mechanism of nuclear factor erythroid 2-related factor 2(NRF2)and glutathione peroxidase 4(GPX4)in primary hepatic carcinoma(PHC).Methods:The expression of NRF2 and GPX4 in peripheral blood of patients with PHC was determined to analyze the diagnostic value of the two combined for PHC.The prognostic significance of NRF2 and GPX4 was evaluated by 3-year followup.Human liver epithelial cells THLE-2 and human hepatocellular carcinoma cells HepG2 were purchased,and the expression of NRF2 and GPX4 in the cells was determined.NRF2 and GPX4 aberrant expression vectors were constructed and transfected into HepG2,and changes in cell proliferation and invasion capabilities were observed.Results:The expression of NRF2 and GPX4 in patients with PHC was higher than that in patients with LC or VH(p<0.05),and the two indicators combined was excellent in diagnosing PHC.Moreover,patients with high expression of NRF2 and GPX4 had a higher risk of death(p<0.05).In in vitro experiments,both NRF2 and GPX4 expression was elevated in HepG2(p<0.05).HepG2 activity was enhanced by increasing the expression of the two,vice versa(p<0.05).Conclusion:NRF2 and GPX4 combined is excellent in diagnosing PHC,and promotes the malignant development of PHC.
文摘Organoseleniums are a class of compounds attracting attention across the globe owing to their Glutathione peroxidase(GPx)mimicry,which confers on them a strong antioxidant activity.Diphenyl diselenide(DPDS)is an Organoselenium whose GPx mimetic property has been suggested to rely on the oxidation of non-protein or protein thiols critical to the activities of some sulfhydryl enzymes.This study,therefore investigated the GPx mimic/antioxidant property of DPDS as well as the role of thiols of two key sulfhydryl enzymes,cerebral Na^(+)/K^(+)-ATPase(sodium pump)and hepatic delta-aminolevulinic acid dehydratase(δ-ALAD)in the GPx mimicry of DPDS.Albino Wistar rats were euthanized,and the liver and brain were removed and used to assay for the effect of DPDS on lipid peroxidation induced by two prooxidants[Fe2^(+)(10μM)and H2O2,(1 mM)]as well as the activities of the sulfhydryl enzymes.The results revealed that DPDS profoundly(P<0.05)counteracted Fe2^(+)and H2O2-induced lipid peroxidation in the rats’hepatic and cerebral tissues.Furthermore,the results of assay systems for lipid peroxidation and sodium pump revealed that DPDS inhibited Na^(+)/K^(+)-ATPase and lipid peroxidation in the brain tissue homogenates in the same reaction system.A similar result was obtained in the assay system for lipid peroxidation and hepaticδ-ALAD as DPDS simultaneously inhibited the enzyme’s activity and lipid peroxidation.This suggests that the GPx mimetic property of DPDS may be linked to the enzymes’loss of activity,which further validates the suggestions that the enzymes’inhibition,as well as the antioxidant action of DPDS,rely on the oxidation of critical thiols of the enzymes.However,the GPx mimicry of DPDS should be investigated in the presence of thiol-blocking or oxidizing agents in biological systems in order to further ascertain the role of protein thiols.
文摘Background:The monkey pox virus is caused by monkey pox(MPX),which is similar to both smallpox and cowpox.Near tropical rain forests,it usually occurs in isolated communities in Central and West Africa.The monkey pox virus,a member of the family Poxviridae and belongs to the genus Orthopoxvirus.Close contact with infected animals,sick people,or contaminated inanimate things can cause the virus to spread to humans.The illness typically takes 7 to 14 days to incubate and is characterized by fever,headache,lethargy,myalgia,generalized body pains,lymph node swelling,and skin lesions.Given the variety of illnesses that can result in skin rashes,it could be challenging to differentiate monkey pox solely based on clinical presentation,particularly for patients with an uncommon look.Objective:The main objective of the study is to evaluate public perceptions regarding the emerging human monkey pox disease and vaccination.Methods:The study was conducted using a cross-sectional study design.The sample size was 472 participants;however,10 questionnaires were excluded because of invalid data.The 462 questionnaires were included by expert validation from the general public of Rawalpindi and Islamabad,Pakistan.The data were analyzed using Chi-squared tests.Results:This questionnaire-based cross-sectional study was conducted from 15 Sep to 15 Oct 2022.The participants’perceptions,knowledge,and attitudes were collected via a 24-item-based questionnaire survey.The survey was based on 462 participants,196(42.4%)were females,and 266(57.6%)were males.The results reveal that out of 462 participants,clinical symptoms of monkey pox disease 82.7%(382),complications of monkey pox disease 81.2%(375),lymphadenopathy(swollen lymph nodes)is one clinical feature that could be used to differentiate between monkey pox and smallpox 81.2%(375)and monkey pox is common in Western and Central Africa 24.2%(112).Furthermore,the majority of participants(P≤0.05)agreed that health officials should start a vaccination campaign to combat monkey pox.Regarding preventive measures and vaccination campaigns,health officials should take public preventive measures 79.7%(368)and health officials start a vaccination campaign against monkey pox disease 56.3%(260).Conclusion:There was a significant difference seen in the public perception regarding monkey pox preventive measures and vaccination.The International health authorities must take priority-based preventative measures to prevent the spread of monkey pox disease around the world.
文摘[Objective] This work was aimed to explore the mechanism of Hg2+ toxicity on plants.[Method]Activities of peroxidase(POD),catalase(CAT)and superoxide dismutase(SOD)were investigated in wheat(Triticum aestivum L.)seedlings under Hg2+ stress at different concentrations.[Result]① There were no obvious effects on the growth of seedlings when the concentration of Hg2+ was lower than 0.10 mmol/L.However,toxic effects on the growth of seedling were observed when the concentration of Hg2+ was higher than 0.10 mmol/L.② Different tissues showed different resistant ability in response to Hg2+ stress.The leaves and roots of wheat seedlings were more insensitive to Hg2+ toxicity.③ CAT was more sensitive to Hg2+ stress compared to POD and SOD.[Conclusion]The toxic effect was related to the concentration of Hg2+(0.10 mmol/L).The higher concentration of Hg2+ could affect the expression of POD,CAT,and SOD isozymes in the leaves,roots of wheat seedlings and germinated seeds,which further affect the normal metabolism of membrane lipid and inhibit the growth of wheat seedlings at last.