期刊文献+
共找到2,343篇文章
< 1 2 118 >
每页显示 20 50 100
Enhancing personalized exercise recommendation with student and exercise portraits
1
作者 Wei-Wei Gao Hui-Fang Ma +2 位作者 Yan Zhao Jing Wang Quan-Hong Tian 《Journal of Electronic Science and Technology》 EI CAS CSCD 2024年第2期91-109,共19页
The exercise recommendation system is emerging as a promising application in online learning scenarios,providing personalized recommendations to assist students with explicit learning directions.Existing solutions gen... The exercise recommendation system is emerging as a promising application in online learning scenarios,providing personalized recommendations to assist students with explicit learning directions.Existing solutions generally follow a collaborative filtering paradigm,while the implicit connections between students(exercises)have been largely ignored.In this study,we aim to propose an exercise recommendation paradigm that can reveal the latent connections between student-student(exercise-exercise).Specifically,a new framework was proposed,namely personalized exercise recommendation with student and exercise portraits(PERP).It consists of three sequential and interdependent modules:Collaborative student exercise graph(CSEG)construction,joint random walk,and recommendation list optimization.Technically,CSEG is created as a unified heterogeneous graph with students’response behaviors and student(exercise)relationships.Then,a joint random walk to take full advantage of the spectral properties of nearly uncoupled Markov chains is performed on CSEG,which allows for full exploration of both similar exercises that students have finished and connections between students(exercises)with similar portraits.Finally,we propose to optimize the recommendation list to obtain different exercise suggestions.After analyses of two public datasets,the results demonstrated that PERP can satisfy novelty,accuracy,and diversity. 展开更多
关键词 Educational data mining Exercise recommend Joint random walk Nearly uncoupled Markov chains Optimization personalized learning
下载PDF
Gamified Learning Systems’Personalized Feedback Report Dashboards via Custom Machine Learning Algorithms and Recommendation Systems
2
作者 Nymfodora-Maria Raftopoulou Petros L.Pallis 《Sociology Study》 2023年第3期161-173,共13页
Gamification in education enables for the holistic optimization of the learning process,empowering learners to ameliorate their digital,cognitive,emotional and social skills,via their active experimentation with game ... Gamification in education enables for the holistic optimization of the learning process,empowering learners to ameliorate their digital,cognitive,emotional and social skills,via their active experimentation with game design elements,accompanying pertinent pedagogical objectives of interest.This paper focuses on a cross-platform,innovative,gamified,educational learning system product,funded by the Hellenic Republic Ministry of Development and Investments:howlearn.By applying gamification techniques,in 3D virtual environments,within which,learners fulfil STEAM(Science,Technology,Engineering,Arts and Mathematics)-related Experiments(Simulations,Virtual Labs,Interactive Storytelling Scenarios,Decision Making Case Studies),howlearn covers learners’subject material,while,simultaneously,functioning,as an Authoring Gamification Tool and as a Game Metrics Repository;users’metrics are being,dynamically,analyzed,through Machine Learning Algorithms.Consequently,the System learns from the data and learners receive Personalized Feedback Report Dashboards of their overall performance,weaknesses,interests and general class competency.A Custom Recommendation System(Collaborative Filtering,Content-Based Filtering)then supplies suggestions,representing the best matches between Experiments and learners,while also focusing on the reinforcement of the learning weaknesses of the latter.Ultimately,by optimizing the Accuracy,Performance and Predictive capability of the Personalized Feedback Report,we provide learners with scientifically valid performance assessments and educational recommendations,thence intensifying sustainable,learner-centered education. 展开更多
关键词 gamified education in-game data analytics personalized feedback report dashboard recommendation systems STATISTICS
下载PDF
FedNRM:A Federal Personalized News Recommendation Model Achieving User Privacy Protection
3
作者 Shoujian Yu Zhenchi Jie +2 位作者 Guowen Wu Hong Zhang Shigen Shen 《Intelligent Automation & Soft Computing》 SCIE 2023年第8期1729-1751,共23页
In recent years,the type and quantity of news are growing rapidly,and it is not easy for users to find the news they are interested in the massive amount of news.A news recommendation system can score and predict the ... In recent years,the type and quantity of news are growing rapidly,and it is not easy for users to find the news they are interested in the massive amount of news.A news recommendation system can score and predict the candidate news,and finally recommend the news with high scores to users.However,existing user models usually only consider users’long-term interests and ignore users’recent interests,which affects users’usage experience.Therefore,this paper introduces gated recurrent unit(GRU)sequence network to capture users’short-term interests and combines users’short-term interests and long-terminterests to characterize users.While existing models often only use the user’s browsing history and ignore the variability of different users’interest in the same news,we introduce additional user’s ID information and apply the personalized attention mechanism for user representation.Thus,we achieve a more accurate user representation.We also consider the risk of compromising user privacy if the user model training is placed on the server side.To solve this problem,we design the training of the user model locally on the client side by introducing a federated learning framework to keep the user’s browsing history on the client side.We further employ secure multiparty computation to request news representations from the server side,which protects privacy to some extent.Extensive experiments on a real-world news dataset show that our proposed news recommendation model has a better improvement in several performance evaluation metrics.Compared with the current state-of-the-art federated news recommendation models,our model has increased by 0.54%in AUC,1.97%in MRR,2.59%in nDCG@5%,and 1.89%in nDCG@10.At the same time,because we use a federated learning framework,compared with other centralized news recommendation methods,we achieve privacy protection for users. 展开更多
关键词 News recommendation federal learning privacy protection personalized attention
下载PDF
Combining User-Driven Social Marketing with System-Driven Personalized Recommendation for Student Finding
4
作者 ZHANG Mingyu 《Journal of Donghua University(English Edition)》 EI CAS 2020年第2期163-172,共10页
Student selection is of crucial importance for supervisors who are choosing students for postgraduate studies or research projects.Due to the challenge of asymmetric information,it is difficult for them to find suitab... Student selection is of crucial importance for supervisors who are choosing students for postgraduate studies or research projects.Due to the challenge of asymmetric information,it is difficult for them to find suitable candidates.The existing methods do not work so well in the web 2.0 context which is inundated with vast online information.In order to overcome the deficiency,a research social network enhanced approach is proposed to provide decision support.It appeals to supervisors to adopt the proposed user-driven social marketing strategy.Meanwhile,this study mainly presents a system-driven personalized recommendation approach to support supervisors'decisions of student selection.The proposed method distinguishes supervisors based on their co-author networks to extract their potential preferences of collaboration styles.Subsequently,corresponding recommendation strategies are employed to provide personalized student recommendation services for targeted supervisors.A prototype is implemented on ScholarMate which provides online communication channels for researchers.A user study is conducted to verify the effectiveness of the proposed approach.The results enlighten designers to consider the differences among different users when designing recommendation strategies. 展开更多
关键词 STUDENT finding USER-DRIVEN social marketing system-driven personalized recommendation collaboration style research ANALYTICS framework
下载PDF
Emotionally Resonant Branding: The Role of AI in Synthesising Dynamic Brand Images for Artists in the Music Industry
5
作者 Kaveen Prabodhya Thivanka Liyanage Weliweriya Liyanage Himendra Balalle 《Open Journal of Applied Sciences》 2024年第9期2661-2678,共18页
Artificial Intelligence (AI) expands its recognition rapidly through the past few years in the context of generating content dynamically, remarkably challenging the human creativity. This study aims to evaluate the ef... Artificial Intelligence (AI) expands its recognition rapidly through the past few years in the context of generating content dynamically, remarkably challenging the human creativity. This study aims to evaluate the efficacy of AI in enhancing personal branding for musicians, particularly in crafting brand images based on emotions received from the artist’s music will improve the audience perceptions regarding the artist’s brand. Study used a quantitative approach for the research, gathering primary data from the survey of 191 people—music lovers, musicians and music producers. The survey focuses on preferences, perceptions, and behaviours related to music consumption and artist branding. The study results demonstrate the awareness and understanding of AI’s role in personal branding within the music industry. Also, results indicate that such an adaptive approach enhances audience perceptions of the artist and strengthens emotional connections. Furthermore, over 50% of the participants indicated a desire to attend live events where an artist’s brand image adapts dynamically to their emotions. The study focuses on novel approaches in personal branding based on the interaction of AI-driven emotional data. In contrast to traditional branding concepts, this study indicates that AI can suggest dynamic and emotionally resonant brand identities for artists. The real time audience response gives proper guidance for the decision-making. This study enriches the knowledge of AI’s applicability to branding processes in the context of the music industry and opens the possibilities for additional advancements in building emotionally appealing brand identities. 展开更多
关键词 Artificial Intelligence Emotional Branding Personal Branding music Industry Dynamic Brand Image Audience Perception Machine Learning Real-Time Emotional Responses
下载PDF
The Design and Realization of Personalized E-commerce Recommendation System
6
作者 Guofeng ZHANG 《International Journal of Technology Management》 2015年第4期27-29,共3页
According to demand and function of the e-commerce recommendation system demand, this paper analyze and design e-commerce and personalized recommendation, design and complete different system functions in different sy... According to demand and function of the e-commerce recommendation system demand, this paper analyze and design e-commerce and personalized recommendation, design and complete different system functions in different system level; then design in detail system process from the front and back office systems, and in detail descript the key data in the database and several tables. Finally, the paper respectively tests several main modules of onstage system and the backstage system. The paper designed electronic commerce recommendation based on personalized recommendation system, it can complete the basic function of the electronic commerce system, also can be personalized commodity recommendation for different users, the user data information and the user' s shopping records. 展开更多
关键词 E-COMMERCE personalized recommendation recommendation system
下载PDF
Personalized Recommendation System on Hadoop and HBase
7
作者 Shufen Zhang Yanyan Dong +1 位作者 Xuebin Chen Shi Wang 《国际计算机前沿大会会议论文集》 2015年第B12期10-11,共2页
In view of the existing recommendation system in the Big Data have two insufficiencies:poor scalability of the data storage and poor expansibility of the recommendation algorithm,research and analysis the IBCF algorit... In view of the existing recommendation system in the Big Data have two insufficiencies:poor scalability of the data storage and poor expansibility of the recommendation algorithm,research and analysis the IBCF algorithm and the working principle of Hadoop and HBase platform,a scheme for optimizing the design of personalized recommendation system based on Hadoop and HBase platform is proposed.The experimental results show that,using the HBase database can effectively solve the problem of mass data storage,using the MapReduce programming model of Hadoop platform parallel processing recommendation problem,can significantly improve the efficiency of the algorithm,so as to further improve the performance of personalized recommendation system. 展开更多
关键词 Hadoop·HBase·MapReduce·personalized recommendation
下载PDF
Ontology-based framework for personalized recommendation in digital libraries 被引量:3
8
作者 颜端武 岑咏华 +1 位作者 张炜 毛平 《Journal of Southeast University(English Edition)》 EI CAS 2006年第3期385-388,共4页
To promote information service ability of digital libraries, a browsing and searching personalized recommendation framework based on the use of ontology is described, where the advantages of ontology are exploited in ... To promote information service ability of digital libraries, a browsing and searching personalized recommendation framework based on the use of ontology is described, where the advantages of ontology are exploited in different parts of the retrieval cycle including query-based relevance measures, semantic user preference representation and automatic update, and personalized result ranking. Both the usage and information resources can be exploited to extract useful knowledge from the way users interact with a digital library. Through combination and mapping between the extracted knowledge and domain ontology, semantic content retrieval between queries and documents can be utilized. Furthermore, ontology-based conceptual vector of user preference can be applied in personalized recommendation feedback. 展开更多
关键词 digital library personalized recommendation ONTOLOGY content retrieval user preference
下载PDF
Design and Implementation of Book Recommendation Management System Based on Improved Apriori Algorithm 被引量:2
9
作者 Yingwei Zhou 《Intelligent Information Management》 2020年第3期75-87,共13页
The traditional Apriori applied in books management system causes slow system operation due to frequent scanning of database and excessive quantity of candidate item-sets, so an information recommendation book managem... The traditional Apriori applied in books management system causes slow system operation due to frequent scanning of database and excessive quantity of candidate item-sets, so an information recommendation book management system based on improved Apriori data mining algorithm is designed, in which the C/S (client/server) architecture and B/S (browser/server) architecture are integrated, so as to open the book information to library staff and borrowers. The related information data of the borrowers and books can be extracted from books lending database by the data preprocessing sub-module in the system function module. After the data is cleaned, converted and integrated, the association rule mining sub-module is used to mine the strong association rules with support degree greater than minimum support degree threshold and confidence coefficient greater than minimum confidence coefficient threshold according to the processed data and by means of the improved Apriori data mining algorithm to generate association rule database. The association matching is performed by the personalized recommendation sub-module according to the borrower and his selected books in the association rule database. The book information associated with the books read by borrower is recommended to him to realize personalized recommendation of the book information. The experimental results show that the system can effectively recommend book related information, and its CPU occupation rate is only 6.47% under the condition that 50 clients are running it at the same time. Anyway, it has good performance. 展开更多
关键词 Information recommendation BOOK Management APRIORI Algorithm Data Mining Association RULE personalized recommendation
下载PDF
Progresses on Personalized Nutritional Evaluation and Recommendation
10
作者 Gang Lin Chuang Liu +7 位作者 Huaijun Zhou Shuo Feng Yiqiang Chen Luoyun Fang Guoyao Wu Jing Zhang Shiyan Qiao Junjun Wang 《Journal of Animal Science and Biotechnology》 SCIE CAS 2010年第3期182-193,共12页
Health is maintained by a state of dynamic homeostasis in which nutrient intake and ex- penditure are of good balance. Therefore, it is important to know exactly the nutritional value of food sources, as well as the n... Health is maintained by a state of dynamic homeostasis in which nutrient intake and ex- penditure are of good balance. Therefore, it is important to know exactly the nutritional value of food sources, as well as the nutritional requirements of individuals, in order to achieve optimal nutrition. Considering the interaction between diet and individual back- ground, nutritional evaluation and recommendation has become a complicate issue needing further investigations. While traditional nutrition research has made significant progress in population nutrition, modern nutrition research is now becoming possible to focus on personalized nutrition in health promotion, disease prevention, performance improvement, and risk assessment of individual with the development of emerging omics technologies. This review tried to summarize the methods used in nutritional evaluation and recom- mendation as well as their applications. Though personal nutrition evaluation and recommendation are still not well-established, utilization of these advanced technologies may expand our knowledge in bioavailability and bioefficacy of diet ingredients, pathophysiological changes in response to dietary intervention, as well as nutrition-associated disease biomarkers discovery, and thus contributing to personalized nutrition. 展开更多
关键词 nutritional evaluation nutritional recommendation personalized nutrition
下载PDF
Improving Recommendation for Effective Personalization in Context-Aware Data Using Novel Neural Network 被引量:1
11
作者 R.Sujatha T.Abirami 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期1775-1787,共13页
The digital technologies that run based on users’content provide a platform for users to help air their opinions on various aspects of a particular subject or product.The recommendation agents play a crucial role in ... The digital technologies that run based on users’content provide a platform for users to help air their opinions on various aspects of a particular subject or product.The recommendation agents play a crucial role in personalizing the needs of individual users.Therefore,it is essential to improve the user experience.The recommender system focuses on recommending a set of items to a user to help the decision-making process and is prevalent across e-commerce and media websites.In Context-Aware Recommender Systems(CARS),several influential and contextual variables are identified to provide an effective recommendation.A substantial trade-off is applied in context to achieve the proper accuracy and coverage required for a collaborative recommendation.The CARS will generate more recommendations utilizing adapting them to a certain contextual situation of users.However,the key issue is how contextual information is used to create good and intelligent recommender systems.This paper proposes an Artificial Neural Network(ANN)to achieve contextual recommendations based on usergenerated reviews.The ability of ANNs to learn events and make decisions based on similar events makes it effective for personalized recommendations in CARS.Thus,the most appropriate contexts in which a user should choose an item or service are achieved.This work converts every label set into a Multi-Label Classification(MLC)problem to enhance recommendations.Experimental results show that the proposed ANN performs better in the Binary Relevance(BR)Instance-Based Classifier,the BR Decision Tree,and the Multi-label SVM for Trip Advisor and LDOS-CoMoDa Dataset.Furthermore,the accuracy of the proposed ANN achieves better results by 1.1%to 6.1%compared to other existing methods. 展开更多
关键词 recommendation agents context-aware recommender systems collaborative recommendation personalization systems optimized neural network-based contextual recommendation algorithm
下载PDF
A Personalized Cloud Services Recommendation Based on Cooperative Relationship between Services
12
作者 Chengwen Zhang Jiali Bian +1 位作者 Bo Cheng Lingfei Li 《Journal of Software Engineering and Applications》 2013年第12期623-629,共7页
A personalized recommendation for cloud services, which is based on usage history and the cooperative relationship of cloud services, is presented. According to service groups, a service group could be defined as seve... A personalized recommendation for cloud services, which is based on usage history and the cooperative relationship of cloud services, is presented. According to service groups, a service group could be defined as several services that were used together by one user at a time, and cooperative relationship between each two services can be calculated. In the process of recommendation, the services which are highly related to the service that the user has selected would be obtained firstly, the result should then take the QoS (Quality of Service) similarity between service’s QoS and user’s preference into account, so the final result combining the cooperative relationship and similarity will meet the functional needs of users and also meet the user’s personalized non-functional requirements. The simulation proves that the algorithm works effectively. 展开更多
关键词 personalized recommendation CLOUD SERVICE Quality of SERVICE SIMILARITY COOPERATIVE Relationship
下载PDF
Beyond Customer Churn: Generating Personalized Actions to Retain Customers in a Retail Bank by a Recommender System Approach
13
作者 Michele Gorgoglione Umberto Panniello 《Journal of Intelligent Learning Systems and Applications》 2011年第2期90-102,共13页
Customer churn may be a critical issue for banks. The extant literature on statistical and machine learning for customer churn focuses on the problem of correctly predicting that a customer is about to switch bank, wh... Customer churn may be a critical issue for banks. The extant literature on statistical and machine learning for customer churn focuses on the problem of correctly predicting that a customer is about to switch bank, while very rarely consid-ers the problem of generating personalized actions to improve the customer retention rate. However, these decisions are at least as critical as the correct identification of customers at risk. The decision of what actions to deliver to what customers is normally left to managers who can only rely upon their knowledge. By looking at the scientific literature on CRM and personalization, this research proposes a number of models which can be used to generate marketing ac-tions, and shows how to integrate them into a model embracing both the analytical prediction of customer churn and the generation of retention actions. The benefits and risks associated with each approach are discussed. The paper also describes a case of application of a predictive model of customer churn in a retail bank where the analysts have also generated a set of personalized actions to retain customers by using one of the approaches presented in the paper, namely by adapting a recommender system approach to the retention problem. 展开更多
关键词 CUSTOMER CHURN CUSTOMER Retention PERSONALIZATION Predictive Models RECOMMENDER systems
下载PDF
Research on the Personalized Recommendation of Clothing Based on Rough Set Theory
14
作者 Lin Qun Yan Ruixia Han Qiuying 《International English Education Research》 2015年第5期6-10,共5页
With time going on, the fact that pace of life becomes faster make more and more customers pay more attention to of clothing. In order to survive and develop better and to attract more customers, enterprisesmust have ... With time going on, the fact that pace of life becomes faster make more and more customers pay more attention to of clothing. In order to survive and develop better and to attract more customers, enterprisesmust have the ability to provide the personalized recommendations and the implementation of differentiated business strategy. This text aims to make enterprises understand the customers' personalized requirement by using the data processed though questionnaire and rough set theory. And enterprises can provide production and marketing auxiliary decision-making effectively. The feasibility and practicality of rough set theory is verified through the personalized recommendationseases. 展开更多
关键词 rough set CLOTHING personalized recommendation
下载PDF
Research and implementation of a personalized book recommendation algorithm --Taking the library of Jinan University as an example
15
作者 LI Tianzhang ZHU Yijia XIAO Liping 《International English Education Research》 2018年第3期20-22,共3页
Abstract: Taking the basic data and the log data of the various businesses of the automation integrated management system of the library in Jinan University as the research object this paper analyzes the internal rel... Abstract: Taking the basic data and the log data of the various businesses of the automation integrated management system of the library in Jinan University as the research object this paper analyzes the internal relationship between books and between the books and the readers, and designs a personalized book recommendation algorithm, the BookSimValue, on the basis of the user collaborative filteringtechnology. The experimental results show that the recommended book information produced by this algorithm can effectively help the readers to solve the problem of the book information overload, which can bring great convenience to the readers and effectively save the time of the readers' selection of the books, thus effectively improving the utilization of the library resources and the service levels. 展开更多
关键词 recommendation system book recommendation personalized recommendation algorithm
下载PDF
Exercise Recommendation with Preferences and Expectations Based on Ability Computation
16
作者 Mengjuan Li Lei Niu 《Computers, Materials & Continua》 SCIE EI 2023年第10期263-284,共22页
In the era of artificial intelligence,cognitive computing,based on cognitive science;and supported by machine learning and big data,brings personalization into every corner of our social life.Recommendation systems ar... In the era of artificial intelligence,cognitive computing,based on cognitive science;and supported by machine learning and big data,brings personalization into every corner of our social life.Recommendation systems are essential applications of cognitive computing in educational scenarios.They help learners personalize their learning better by computing student and exercise characteristics using data generated from relevant learning progress.The paper introduces a Learning and Forgetting Convolutional Knowledge Tracking Exercise Recommendation model(LFCKT-ER).First,the model computes students’ability to understand each knowledge concept,and the learning progress of each knowledge concept,and the model consider their forgetting behavior during learning progress.Then,students’learning stage preferences are combined with filtering the exercises that meet their learning progress and preferences.Then students’ability is used to evaluate whether their expectations of the difficulty of the exercises are reasonable.Then,the model filters the exercises that best match students’expectations again by students’expectations.Finally,we use a simulated annealing optimization algorithm to assemble a set of exercises with the highest diversity.From the experimental results,the LFCKT-ER model can better meet students’personalized learning needs and is more accurate than other exercise recommendation systems under various metrics on real online education public datasets. 展开更多
关键词 Cognitive computing personalized learning forgetting behavior exercise recommendation
下载PDF
The Mobile Personalized Recommendation Model Containing Implicit Intention
17
作者 Jing Liu Jun Zhang +2 位作者 Yan Li Shuqun He Caixue Zheng 《国际计算机前沿大会会议论文集》 2015年第B12期8-9,共2页
Because mobile e-commerce is limited by the mobile terminal,network environment and other factors,accurate personalized recommendations become more and more important.We establish a large data intelligence platform,ai... Because mobile e-commerce is limited by the mobile terminal,network environment and other factors,accurate personalized recommendations become more and more important.We establish a large data intelligence platform,aiming at the characteristics of mobile e-commerce;we put forward a personalized recommendation model with implicit intention further.Firstly,create an intelligence unit with the virtual individual association set,virtual demand association set and virtual behavior associated set;Secondly,calculate the complex buying behavior prediction engine;Finally,give the predictive value of complex buying behavior.This method takes full account of factors such as hidden wishes perturbations that affect the predict of complex buying behavior,which to some extent solve a long-span composite purchasing behavior prediction.It shows that this method improves the purchasing behavior prediction accuracy effectively through experiments. 展开更多
关键词 MOBILE e-commerce·personalized recommendations·Hidden wishes·Big data INTELLIGENCE platform
下载PDF
Multi-Feature Fusion Book Recommendation Model Based on Deep Neural Network
18
作者 Zhaomin Liang Tingting Liang 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期205-219,共15页
The traditional recommendation algorithm represented by the collaborative filtering algorithm is the most classical and widely recommended algorithm in the practical industry.Most book recommendation systems also use ... The traditional recommendation algorithm represented by the collaborative filtering algorithm is the most classical and widely recommended algorithm in the practical industry.Most book recommendation systems also use this algorithm.However,the traditional recommendation algorithm represented by the collaborative filtering algorithm cannot deal with the data sparsity well.This algorithm only uses the shallow feature design of the interaction between readers and books,so it fails to achieve the high-level abstract learning of the relevant attribute features of readers and books,leading to a decline in recommendation performance.Given the above problems,this study uses deep learning technology to model readers’book borrowing probability.It builds a recommendation system model through themulti-layer neural network and inputs the features extracted from readers and books into the network,and then profoundly integrates the features of readers and books through the multi-layer neural network.The hidden deep interaction between readers and books is explored accordingly.Thus,the quality of book recommendation performance will be significantly improved.In the experiment,the evaluation indexes ofHR@10,MRR,andNDCGof the deep neural network recommendation model constructed in this paper are higher than those of the traditional recommendation algorithm,which verifies the effectiveness of the model in the book recommendation. 展开更多
关键词 Book recommendation deep learning neural network multi-feature fusion personalized prediction
下载PDF
基于画像技术的教师研修路径智能推荐研究 被引量:10
19
作者 胡小勇 孙硕 穆肃 《电化教育研究》 CSSCI 北大核心 2024年第2期106-112,共7页
教师是教育的第一资源,研修是促进教师专业发展的重要方式。在大数据、数字画像等新技术赋能下,优化教师研修路径以提升教师发展质量变得尤为重要。文章构建了多模态数据和画像技术支持的教师研修路径智能推荐模型,包括数据伴随式采集... 教师是教育的第一资源,研修是促进教师专业发展的重要方式。在大数据、数字画像等新技术赋能下,优化教师研修路径以提升教师发展质量变得尤为重要。文章构建了多模态数据和画像技术支持的教师研修路径智能推荐模型,包括数据伴随式采集分类与预处理、教师画像生成、研修路径算法三个模块,实现教师研修特征与优质研修资源的智能匹配。在教师研修路径动态优化方面,模型通过提供基于画像的个性化导研服务、基于知识图谱的资源关联推荐、基于群体智能的群体路径发现、基于目标导向的过程评价和基于研修行为的智能预警,满足教师的个性化研修需求,为发掘研修数据潜能、促进教师智能研修模式创新提供参考。 展开更多
关键词 教师画像 教师专业发展 多模态数据 个性化研修 智能推荐
下载PDF
个性化推荐算法的法律风险规制 被引量:6
20
作者 谢永江 杨永兴 刘涛 《北京科技大学学报(社会科学版)》 2024年第1期77-85,共9页
信息爆发增长催生了个性化推荐算法技术的兴起。个性化推荐算法在解决信息过载和长尾问题、满足用户个性化需求、提高互联网信息服务效率的同时,也引发了用户意思自治受限、隐私泄露、信息茧房、算法歧视等诸多法律风险,亟需法律作出必... 信息爆发增长催生了个性化推荐算法技术的兴起。个性化推荐算法在解决信息过载和长尾问题、满足用户个性化需求、提高互联网信息服务效率的同时,也引发了用户意思自治受限、隐私泄露、信息茧房、算法歧视等诸多法律风险,亟需法律作出必要的回应。为此,应当在诚信原则、自主原则、公正原则、比例原则的指导下,树立开放的隐私保护观,强化算法告知义务与用户拒绝权利,完善算法解释权,构建算法审计制度,以降低个性化推荐算法所带来的法律风险。 展开更多
关键词 个性化推荐 算法 法律风险 法律规制
下载PDF
上一页 1 2 118 下一页 到第
使用帮助 返回顶部