This paper focuses on the adaptive detection of range and Doppler dual-spread targets in non-homogeneous and nonGaussian sea clutter.The sea clutter from two polarimetric channels is modeled as a compound-Gaussian mod...This paper focuses on the adaptive detection of range and Doppler dual-spread targets in non-homogeneous and nonGaussian sea clutter.The sea clutter from two polarimetric channels is modeled as a compound-Gaussian model with different parameters,and the target is modeled as a subspace rangespread target model.The persymmetric structure is used to model the clutter covariance matrix,in order to reduce the reliance on secondary data of the designed detectors.Three adaptive polarimetric persymmetric detectors are designed based on the generalized likelihood ratio test(GLRT),Rao test,and Wald test.All the proposed detectors have constant falsealarm rate property with respect to the clutter texture,the speckle covariance matrix.Experimental results on simulated and measured data show that three adaptive detectors outperform the competitors in different clutter environments,and the proposed GLRT detector has the best detection performance under different parameters.展开更多
This paper deals with subspace detection for rangespread target in non-homogeneous clutter with unknown covariance matrix where structured interference is presented in the received data.Through exploiting the persymme...This paper deals with subspace detection for rangespread target in non-homogeneous clutter with unknown covariance matrix where structured interference is presented in the received data.Through exploiting the persymmetry of the clutter covariance matrix,we propose two adaptive target detectors,which are referred to as persymmetric subspace Rao to suppress interference and persymmetric subspace Wald to suppress interference("PS-Rao-I"and"PS-Wald-I"),respectively.The persymmetry-based design brings in the advantage of easy implementation for small training sample support.The signal flow analysis of the two detectors shows that the PS-Rao-I rejects interference and integrates signals successively through separated matrix projection,while the PS-Wald-I jointly achieves interference elimination and signal combination via oblique projection.In addition,both detectors are shown to be constant false alarm rate detectors,significantly improving the detection performance with other competing detectors under the condition of limited training.展开更多
基金supported by the National Natural Science Foundation of China(62371382,62071346)the Science,Technology&Innovation Project of Xiong’an New Area(2022XAGG0181)the Special Funds for Creative Research(2022C61540)。
文摘This paper focuses on the adaptive detection of range and Doppler dual-spread targets in non-homogeneous and nonGaussian sea clutter.The sea clutter from two polarimetric channels is modeled as a compound-Gaussian model with different parameters,and the target is modeled as a subspace rangespread target model.The persymmetric structure is used to model the clutter covariance matrix,in order to reduce the reliance on secondary data of the designed detectors.Three adaptive polarimetric persymmetric detectors are designed based on the generalized likelihood ratio test(GLRT),Rao test,and Wald test.All the proposed detectors have constant falsealarm rate property with respect to the clutter texture,the speckle covariance matrix.Experimental results on simulated and measured data show that three adaptive detectors outperform the competitors in different clutter environments,and the proposed GLRT detector has the best detection performance under different parameters.
基金supported by the National Natural Science Foundation of China(61901467,61701370)the Aeronautical Foundation of China(20180181001)+2 种基金China Postdoctoral Science Foundation(2019M653561,2020T130493)the Aerospace Science and Technology Fund(SAST2018-098)the National Defense Science and Technology Foundation of China(2019-JCJQ-JJ-060)。
文摘This paper deals with subspace detection for rangespread target in non-homogeneous clutter with unknown covariance matrix where structured interference is presented in the received data.Through exploiting the persymmetry of the clutter covariance matrix,we propose two adaptive target detectors,which are referred to as persymmetric subspace Rao to suppress interference and persymmetric subspace Wald to suppress interference("PS-Rao-I"and"PS-Wald-I"),respectively.The persymmetry-based design brings in the advantage of easy implementation for small training sample support.The signal flow analysis of the two detectors shows that the PS-Rao-I rejects interference and integrates signals successively through separated matrix projection,while the PS-Wald-I jointly achieves interference elimination and signal combination via oblique projection.In addition,both detectors are shown to be constant false alarm rate detectors,significantly improving the detection performance with other competing detectors under the condition of limited training.