A discrete event system is a dynamical system whose state evolves in time by the occurrence of events at possibly irregular time intervals. Timed Petri nets are a graphical and mathematical modeling tool applicable to...A discrete event system is a dynamical system whose state evolves in time by the occurrence of events at possibly irregular time intervals. Timed Petri nets are a graphical and mathematical modeling tool applicable to discrete event systems in order to represent its states evolution where the timing at which the state changes is taken into consideration. One of the most important performance issues to be considered in a discrete event system is its stability. Lyapunov theory provides the required tools needed to aboard the stability and stabilization problems for discrete event systems modeled with timed Petri nets whose mathematical model is given in terms of difference equations. By proving stability one guarantees a bound on the discrete event systems state dynamics. When the system is unstable, a sufficient condition to stabilize the system is given. It is shown that it is possible to restrict the discrete event systems state space in such a way that boundedness is achieved. However, the restriction is not numerically precisely known. This inconvenience is overcome by considering a specific recurrence equation, in the max-plus algebra, which is assigned to the timed Petri net graphical model.展开更多
Fuzzy Petri net(FPN) has been extensively applied in industrial fields for knowledge-based systems or systems with uncertainty.Although the applications of FPN are known to be successful,the theoretical research of FP...Fuzzy Petri net(FPN) has been extensively applied in industrial fields for knowledge-based systems or systems with uncertainty.Although the applications of FPN are known to be successful,the theoretical research of FPN is still at an initial stage.To pave a way for further study,this work explores related dynamic properties of FPN including reachability,boundedness,safeness,liveness and fairness.The whole methodology is divided into two phases.In the first phase,a comparison between elementary net system(EN_system) and FPN is established to prove that the FPN is an extensive formalism of Petri nets using a backwards-compatible extension method.Next,current research results of dynamic properties are utilized to analyze FPN model.The results illustrate that FPN model is bounded,safe,weak live and fair,and can support theoretical evidences for designing related decomposition algorithm.展开更多
In this paper, we present a new formalism for Modeling Multi Agent Systems (MAS). Our model based a PN is able to describe not only not the internal state of each agent modeled but also its behavior. Owing to these fe...In this paper, we present a new formalism for Modeling Multi Agent Systems (MAS). Our model based a PN is able to describe not only not the internal state of each agent modeled but also its behavior. Owing to these features, one can model naturally the dynamic behavior of complex systems and the communication between these entities. For this, we propose mathematical definitions attached to firing transitions. To validate our contribution, we will deal with real examples.展开更多
Architecture Analysis and Design Language (AADL) has been utilized to specify and verify nonfunctional properties of Real-Time Embedded Systems (RTES) used in critical application systems. Examples of such critical ap...Architecture Analysis and Design Language (AADL) has been utilized to specify and verify nonfunctional properties of Real-Time Embedded Systems (RTES) used in critical application systems. Examples of such critical application systems include medical devices, nuclear power plants, aerospace, financial, etc. Using AADL, an engineer is enable to analyze the quality of a system. For example, a developer can perform performance analysis such as end-to-end flow analysis to guarantee that system components have the required resources to meet the timing requirements relevant to their communications. The critical issue related to developing and deploying safety critical systems is how to validate the expected level of quality (e.g., safety, performance, security) and functionalities (capabilities) at design level. Currently, the core AADL is extensively applied to analyze and verify quality of RTES embed in the safety critical applications. The notation lacks the formal semantics needed to reason about the logical properties (e.g., deadlock, livelock, etc.) and capabilities of safety critical systems. The objective of this research is to augment AADL with exiting formal semantics and supporting tools in a manner that these properties can be automatically verified. Toward this goal, we exploit Petri Net Markup Language (PNML), which is a standard acting as the intermediate language between different classes of Petri Nets. Using PNML, we interface AADL with different classes of Petri nets, which support different types of tools and reasoning. The justification for using PNML is that the framework provides a context in which interoperability and exchangeability among different models of a system specified by different types of Petri nets is possible. The contributions of our work include a set of mappings and mapping rules between AADL and PNML. To show the feasibility of our approach, a fragment of RT-Embedded system, namely, Cruise Control System has been used.展开更多
This paper proposes the evaluation of arteriovenous shunt (AVS) stenosis using a fractional-order Fuzzy Petri net based screening system for long-term hemodialysis treatment of patients. The screening system uses the ...This paper proposes the evaluation of arteriovenous shunt (AVS) stenosis using a fractional-order Fuzzy Petri net based screening system for long-term hemodialysis treatment of patients. The screening system uses the Burg method, the fractional-order chaos system, and the Fuzzy Petri net (FPN) for early detection of AVS dysfunction. The Burg method is an autoregressive (AR) model that is used to estimate the frequency spectra of a phonoangiographic signal and to identify the spectral peaks in the region from 25 Hz to 800 Hz. In AVS, the frequency spectrum varies between normal blood flow and turbulent flow. The power spectra demonstrate changes in frequency and amplitude as the degree of stenosis changes. A screening system combining fractional-order chaos system and FPN is used to track the differences in the frequency spectra between the normal and stenosis access. The dynamic errors are indexes that can be used to evaluate the degree of AVS stenosis using a FPN. For 42 long-term follow-up patients, testing results show that the proposed screening system is more efficient in the evaluation of AVS stenosis.展开更多
模型的模拟能力一直是系统建模方面的一个重要研究课题。本文先用一个直观的“零检验”例子说明时间Petri 网的模拟能力比传统 Petri 网要强,并首次证明了时间 Petri 网与计算科学的最高模型——图灵机有相等的模拟能力;最后给出了另外...模型的模拟能力一直是系统建模方面的一个重要研究课题。本文先用一个直观的“零检验”例子说明时间Petri 网的模拟能力比传统 Petri 网要强,并首次证明了时间 Petri 网与计算科学的最高模型——图灵机有相等的模拟能力;最后给出了另外一种含时间因素的时延 Perri 网向时间 Petri 网的转换方法,这说明了时间 Petri 网虽然形式上较为简单,但其模拟能力却并不比其它合时间因素的 Petri 网逊色,同时为时延 Petri 网的研究提供了另外一种有效方法。展开更多
为了借用一阶混杂Petri网(First-Order Hybrid Petri Nets)的建模原语和分析方法来分析流体随机Petri网(Fluid Stochastic Petri Nets)以克服流体随机Petri网数值分析方法的局限性,本文提出了一种流体随机Petri网转换成一阶混杂Petri网...为了借用一阶混杂Petri网(First-Order Hybrid Petri Nets)的建模原语和分析方法来分析流体随机Petri网(Fluid Stochastic Petri Nets)以克服流体随机Petri网数值分析方法的局限性,本文提出了一种流体随机Petri网转换成一阶混杂Petri网的形式化描述方法,并对其转换的正确性进行了证明,最后通过实例分析了流体随机Petri网转换成一阶混杂Petri网的必要性。展开更多
文摘A discrete event system is a dynamical system whose state evolves in time by the occurrence of events at possibly irregular time intervals. Timed Petri nets are a graphical and mathematical modeling tool applicable to discrete event systems in order to represent its states evolution where the timing at which the state changes is taken into consideration. One of the most important performance issues to be considered in a discrete event system is its stability. Lyapunov theory provides the required tools needed to aboard the stability and stabilization problems for discrete event systems modeled with timed Petri nets whose mathematical model is given in terms of difference equations. By proving stability one guarantees a bound on the discrete event systems state dynamics. When the system is unstable, a sufficient condition to stabilize the system is given. It is shown that it is possible to restrict the discrete event systems state space in such a way that boundedness is achieved. However, the restriction is not numerically precisely known. This inconvenience is overcome by considering a specific recurrence equation, in the max-plus algebra, which is assigned to the timed Petri net graphical model.
基金Project(R.J13000.7828.4F721)supported by Soft Computing Research Group(SCRP),Research Management Centre(RMC),UTM and Ministry of Higher Education Malaysia(MOHE)for Financial Support Through the Fundamental Research Grant Scheme(FRGS),MalaysiaProject(61462029)supported by the National Natural Science Foundation of China
文摘Fuzzy Petri net(FPN) has been extensively applied in industrial fields for knowledge-based systems or systems with uncertainty.Although the applications of FPN are known to be successful,the theoretical research of FPN is still at an initial stage.To pave a way for further study,this work explores related dynamic properties of FPN including reachability,boundedness,safeness,liveness and fairness.The whole methodology is divided into two phases.In the first phase,a comparison between elementary net system(EN_system) and FPN is established to prove that the FPN is an extensive formalism of Petri nets using a backwards-compatible extension method.Next,current research results of dynamic properties are utilized to analyze FPN model.The results illustrate that FPN model is bounded,safe,weak live and fair,and can support theoretical evidences for designing related decomposition algorithm.
文摘In this paper, we present a new formalism for Modeling Multi Agent Systems (MAS). Our model based a PN is able to describe not only not the internal state of each agent modeled but also its behavior. Owing to these features, one can model naturally the dynamic behavior of complex systems and the communication between these entities. For this, we propose mathematical definitions attached to firing transitions. To validate our contribution, we will deal with real examples.
文摘Architecture Analysis and Design Language (AADL) has been utilized to specify and verify nonfunctional properties of Real-Time Embedded Systems (RTES) used in critical application systems. Examples of such critical application systems include medical devices, nuclear power plants, aerospace, financial, etc. Using AADL, an engineer is enable to analyze the quality of a system. For example, a developer can perform performance analysis such as end-to-end flow analysis to guarantee that system components have the required resources to meet the timing requirements relevant to their communications. The critical issue related to developing and deploying safety critical systems is how to validate the expected level of quality (e.g., safety, performance, security) and functionalities (capabilities) at design level. Currently, the core AADL is extensively applied to analyze and verify quality of RTES embed in the safety critical applications. The notation lacks the formal semantics needed to reason about the logical properties (e.g., deadlock, livelock, etc.) and capabilities of safety critical systems. The objective of this research is to augment AADL with exiting formal semantics and supporting tools in a manner that these properties can be automatically verified. Toward this goal, we exploit Petri Net Markup Language (PNML), which is a standard acting as the intermediate language between different classes of Petri Nets. Using PNML, we interface AADL with different classes of Petri nets, which support different types of tools and reasoning. The justification for using PNML is that the framework provides a context in which interoperability and exchangeability among different models of a system specified by different types of Petri nets is possible. The contributions of our work include a set of mappings and mapping rules between AADL and PNML. To show the feasibility of our approach, a fragment of RT-Embedded system, namely, Cruise Control System has been used.
文摘This paper proposes the evaluation of arteriovenous shunt (AVS) stenosis using a fractional-order Fuzzy Petri net based screening system for long-term hemodialysis treatment of patients. The screening system uses the Burg method, the fractional-order chaos system, and the Fuzzy Petri net (FPN) for early detection of AVS dysfunction. The Burg method is an autoregressive (AR) model that is used to estimate the frequency spectra of a phonoangiographic signal and to identify the spectral peaks in the region from 25 Hz to 800 Hz. In AVS, the frequency spectrum varies between normal blood flow and turbulent flow. The power spectra demonstrate changes in frequency and amplitude as the degree of stenosis changes. A screening system combining fractional-order chaos system and FPN is used to track the differences in the frequency spectra between the normal and stenosis access. The dynamic errors are indexes that can be used to evaluate the degree of AVS stenosis using a FPN. For 42 long-term follow-up patients, testing results show that the proposed screening system is more efficient in the evaluation of AVS stenosis.
文摘模型的模拟能力一直是系统建模方面的一个重要研究课题。本文先用一个直观的“零检验”例子说明时间Petri 网的模拟能力比传统 Petri 网要强,并首次证明了时间 Petri 网与计算科学的最高模型——图灵机有相等的模拟能力;最后给出了另外一种含时间因素的时延 Perri 网向时间 Petri 网的转换方法,这说明了时间 Petri 网虽然形式上较为简单,但其模拟能力却并不比其它合时间因素的 Petri 网逊色,同时为时延 Petri 网的研究提供了另外一种有效方法。
文摘为了借用一阶混杂Petri网(First-Order Hybrid Petri Nets)的建模原语和分析方法来分析流体随机Petri网(Fluid Stochastic Petri Nets)以克服流体随机Petri网数值分析方法的局限性,本文提出了一种流体随机Petri网转换成一阶混杂Petri网的形式化描述方法,并对其转换的正确性进行了证明,最后通过实例分析了流体随机Petri网转换成一阶混杂Petri网的必要性。