Using a low-order spectral model derived from the equatorial equilibrium model, possible physical mechanisms are interpreted by the theory of multiple equilibria states for the active and break phases of the South Asi...Using a low-order spectral model derived from the equatorial equilibrium model, possible physical mechanisms are interpreted by the theory of multiple equilibria states for the active and break phases of the South Asian Monsoon, with consideration of the effects of heating by cumulus heating and cooling by radiation. The result shows that the South Asian Monsoon is active when the cumulus convection intensifies (or the radiation cooling weakens). the monsoon breaks when the convection weakens (or the cooling intensifies). It is consistent with the hypothesis of cloud-radiation by Krishnamurti et al.展开更多
Based on phase focusing theory, focusing waves with different spectral types and breaking severities were generated in a wave flume. The time series of surface elevation fluctuation along the flume were obtained by ut...Based on phase focusing theory, focusing waves with different spectral types and breaking severities were generated in a wave flume. The time series of surface elevation fluctuation along the flume were obtained by utilizing 22 wave probes mounted along the mid-stream of the flume. Based on the wave spectrum obtained using fast Fourier transform(FFT), the instability characteristics of the energy spectrum were reported in this paper. By analyzing the variation of total spectral energy, the total spectral energy after wave breaking was found to clearly decrease, and the loss value and ratio gradually increased and tended to stabilize with the enhancement of breaking severity for different spectral types. When wave breaking occurred, the energy loss was primarily in a high-frequency range of f/fp>1.0, and energy gain was primarily in a low-frequency range of f/fp<1.0. As the breaking severity increased, the energy gain-loss ratio decreased gradually, which demonstrates that the energy was mostly dissipated. For plunging waves, the energy gain-loss ratio reached 24% for the constant wave steepness(CWS) spectrum, and was slightly larger at approximately 30% for the constant wave amplitude(CWA) spectrum, and was the largest at approximately 42% for the Pierson-Moskowitz(PM) spectrum.展开更多
The space-time evolution of a given density perturbation in cold homogeneous electron- positron-ion plasma is investigated with an assumption of infinitely massive ions by employing a numerical calculation method. The...The space-time evolution of a given density perturbation in cold homogeneous electron- positron-ion plasma is investigated with an assumption of infinitely massive ions by employing a numerical calculation method. The phase-mixing time and wave-breaking time can be effectively distinguished with this method. It is found that an increase of the ratio of equilibrium ion density to equilibrium electron density can attenuate plasma oscillations, leading to a delay in wave breaking. The dependence of the phase-mixing and wave-breaking times on the amplitude of the initial perturbation is also discussed.展开更多
In the present work we study the Hamiltonian, path integral and BRST formulations of the Chern-Simons-Higgs theory in two-space one-time dimensions, in the so-called broken symmetry phase of the Higgs potential (where...In the present work we study the Hamiltonian, path integral and BRST formulations of the Chern-Simons-Higgs theory in two-space one-time dimensions, in the so-called broken symmetry phase of the Higgs potential (where the phase φ(xμ) of the complex matter field Φ(xμ) carries the charge degree of freedom of the complex matter field and is akin to the Goldstone boson) on the light-front (i.e., on the hyperplanes defined by the fixed light-cone time). The theory is seen to possess a set of first-class constraints and the local vector gauge symmetry. The theory being gauge-invariant is quantized under appropriate gauge-fixing conditions. The explicit Hamiltonian and path integral quantization is achieved under the above light-cone gauges. The Heisenberg equations of motion of the system are derived for the physical degrees of freedom of the system. Finally the BRST quantization of the system is achieved under appropriate BRST gauge-fixing, where the BRST symmetry is maintained even under the BRST light-cone gauge-fixing.展开更多
文摘Using a low-order spectral model derived from the equatorial equilibrium model, possible physical mechanisms are interpreted by the theory of multiple equilibria states for the active and break phases of the South Asian Monsoon, with consideration of the effects of heating by cumulus heating and cooling by radiation. The result shows that the South Asian Monsoon is active when the cumulus convection intensifies (or the radiation cooling weakens). the monsoon breaks when the convection weakens (or the cooling intensifies). It is consistent with the hypothesis of cloud-radiation by Krishnamurti et al.
基金financially supported by the State Key Research and Development Program of China(Grant No.2016YFC1401405)the National Natural Science Foundation of China(Grant Nos.51779038 and 51279028)
文摘Based on phase focusing theory, focusing waves with different spectral types and breaking severities were generated in a wave flume. The time series of surface elevation fluctuation along the flume were obtained by utilizing 22 wave probes mounted along the mid-stream of the flume. Based on the wave spectrum obtained using fast Fourier transform(FFT), the instability characteristics of the energy spectrum were reported in this paper. By analyzing the variation of total spectral energy, the total spectral energy after wave breaking was found to clearly decrease, and the loss value and ratio gradually increased and tended to stabilize with the enhancement of breaking severity for different spectral types. When wave breaking occurred, the energy loss was primarily in a high-frequency range of f/fp>1.0, and energy gain was primarily in a low-frequency range of f/fp<1.0. As the breaking severity increased, the energy gain-loss ratio decreased gradually, which demonstrates that the energy was mostly dissipated. For plunging waves, the energy gain-loss ratio reached 24% for the constant wave steepness(CWS) spectrum, and was slightly larger at approximately 30% for the constant wave amplitude(CWA) spectrum, and was the largest at approximately 42% for the Pierson-Moskowitz(PM) spectrum.
基金supported by National Natural Science Foundation of China (Nos. 11665012 and 11247016)the Natural Science Foundation of Jiangxi Province, China (Nos. 2014ZBAB202001 and 2015ZBAB202006)
文摘The space-time evolution of a given density perturbation in cold homogeneous electron- positron-ion plasma is investigated with an assumption of infinitely massive ions by employing a numerical calculation method. The phase-mixing time and wave-breaking time can be effectively distinguished with this method. It is found that an increase of the ratio of equilibrium ion density to equilibrium electron density can attenuate plasma oscillations, leading to a delay in wave breaking. The dependence of the phase-mixing and wave-breaking times on the amplitude of the initial perturbation is also discussed.
文摘In the present work we study the Hamiltonian, path integral and BRST formulations of the Chern-Simons-Higgs theory in two-space one-time dimensions, in the so-called broken symmetry phase of the Higgs potential (where the phase φ(xμ) of the complex matter field Φ(xμ) carries the charge degree of freedom of the complex matter field and is akin to the Goldstone boson) on the light-front (i.e., on the hyperplanes defined by the fixed light-cone time). The theory is seen to possess a set of first-class constraints and the local vector gauge symmetry. The theory being gauge-invariant is quantized under appropriate gauge-fixing conditions. The explicit Hamiltonian and path integral quantization is achieved under the above light-cone gauges. The Heisenberg equations of motion of the system are derived for the physical degrees of freedom of the system. Finally the BRST quantization of the system is achieved under appropriate BRST gauge-fixing, where the BRST symmetry is maintained even under the BRST light-cone gauge-fixing.