期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Tests of relative vertical offsets for several types of GPS receiver antenna phase centers 被引量:2
1
作者 Hao Ming Qin Shanlan +2 位作者 Wang Qingliang Wang Jianhua Zhou Lin 《Geodesy and Geodynamics》 2015年第5期392-395,共4页
The correction for antenna phase center is considered in processing Global Positioning System (GPS) data collected from a network of GPS ultra-short baselines. Compared with the leveling measurements, the GPS result... The correction for antenna phase center is considered in processing Global Positioning System (GPS) data collected from a network of GPS ultra-short baselines. Compared with the leveling measurements, the GPS results show that the relative vertical offsets for the pairs of GPS receiver antenna phase centers still exist, although absolute calibration of the antenna phase center variations (PCVs) has been considered. With respect to the TPS CR.G3 antenna, the relative vertical offset for the LEI AT504 antenna is 8.4 mm, the offset for the ASH701945C_M antenna is 5.5 mm, and those for the ASHY00936E_C and ASH701945B_M antennas are approximately between 2 mm and -3 mm. The relative offsets for the same type of antennas are approximately 1 mm. By correcting the absolute PCVs, the existing relative offset becomes negligible for horizontal positioning. 展开更多
关键词 Global Positioning System (GPS) Antenna phase center phase center variation Vertical offsets Horizontal offset Leveling Crustal movement Vertical velocity
下载PDF
New theoretical analysis method for the phase center in the Fresnel region of complex structure antennas 被引量:3
2
作者 Nian Feng Wang Wei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第5期865-871,共7页
A finite domain time difference (FDTD) and second-derivative combined method is proposed for the evaluation of phase center in the Fresnel region of complex structure millimeter antennas. This method adopts FDTD's ... A finite domain time difference (FDTD) and second-derivative combined method is proposed for the evaluation of phase center in the Fresnel region of complex structure millimeter antennas. This method adopts FDTD's near to far field transformation to obtain the fields in Fresnel region and then applies the second-derivative method to calculate the phase center. The adoption of FDTD efficiently overcomes the difficulties arising from the existing calculation methods' requirements for the radiation analytical formula of some complex antennas, which makes the existing second-derivative method more applicable in engineering. Also, FDTD increases the precision owing to the superposition field calculation from its extrapolation. The correctness of this proposed method is certified with typical examples and the phase center in the Fresnel region of a microwave radiometry calibration corrugate horn antenna is evaluated with the key features. 展开更多
关键词 phase center FDTD second derivative Fresnei region corrugated horn.
下载PDF
Large Spacing Array with Offset Phase Center Elements for Highly Integrated Applications 被引量:1
3
作者 Hailing Jiang Hui Tian +1 位作者 Shubo Dun Junyi Zhang 《China Communications》 SCIE CSCD 2022年第5期231-240,共10页
A scanning and uniform array architecture with large spacing,low complexity and high scalability is presented for high integration massive array applications.It is constructed by offset phase center elements arranged ... A scanning and uniform array architecture with large spacing,low complexity and high scalability is presented for high integration massive array applications.It is constructed by offset phase center elements arranged in a uniform and regular way,but its spacing can be larger than that of traditional arrays.An ideal model of the offset phase center element is established and its far-field distribution is derived.To suppress grating lobes,the phase center of any element is designed to be movable without changing its physical position.Using genetic algorithm(GA),a new constraint condition limiting the number of phase center changes is proposed to solve the objective function of the minimum values of grating lobes(GLs)and side lobes(SLs).It is shown that the optimal results can be achieved by two changes of phase centers.A multimode circular patch is developed and designed,and characteristics of the offset phase center are analyzed and verified.A prototype array of 12×12 offset phase center elements is implemented based on multi-mode circular patches.Full wave simulation results of radiation patterns show that the level of grating lobes is suppressed at least 7dB with 1.12λ spacing,while the scanning angle is 20°. 展开更多
关键词 massive array offset phase center array grating lobe reduction genetic algorithm multi-mode circular patch
下载PDF
An Active Anti-Jamming Approach for Frequency Diverse Array Radar with Adaptive Weights 被引量:2
4
作者 Yibin Liu Chunyang Wang +1 位作者 Guimei Zheng Jian Gong 《Journal of Beijing Institute of Technology》 EI CAS 2021年第4期403-411,共9页
Due to the rapid development of electronic countermeasures(ECMs),the corresponding means of electronic counter countermeasures(ECCMs)are urgently needed.In this paper,an act-ive anti-jamming method based on frequency ... Due to the rapid development of electronic countermeasures(ECMs),the corresponding means of electronic counter countermeasures(ECCMs)are urgently needed.In this paper,an act-ive anti-jamming method based on frequency diverse array radar is proposed.By deriving the closed form of the phase center in a uniform line array FDA,we establish a model of the FDA signal based on adaptive weights and derive the effect of active anti-jamming in this regime.The pro-posed active anti-jamming method makes it difficult for jammers to detect or locate our radar.Fur-thermore,the effectiveness of the two frequency increment schemes in terms of anti-jamming is ana-lyzed by comparing the deviation of phase center.Finally,the simulation results verify the effective-ness and superiority of the proposed method. 展开更多
关键词 frequency diverse array(FDA) active anti-jamming adaptive weights phase center deviation
下载PDF
Canonical framework for multi-channel SAR-GMTI
5
作者 Liu Congfeng Liao Guisheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第5期923-928,共6页
Synthetic aperture radar (SAR) systems have become an important tool for fine-resolution mapping and other remote sensing operations. The multi-channel SAR ground moving-target indication (GMTI) must process its d... Synthetic aperture radar (SAR) systems have become an important tool for fine-resolution mapping and other remote sensing operations. The multi-channel SAR ground moving-target indication (GMTI) must process its data to produce not only the image of surveillance area but also the information of the ground moving-targets. The topic of moving-target detection in clutter has been extensively studied, and there are many methods that are used to detect moving targets, such as displaced phase center antenna (DPCA) method, along-track interfero-metric (ATI) phase, space-time adaptive processing (STAP), or some other metrics. A canonical framework is proposed that encompasses all the multi-channel SAR-GMT methods, namely, DPCA and ATI. The statistical test metric for multi-channel SAR-GMTI is established in a simple form, via the definition of the complex central Wishart distribution, to deduce the statistics of the test metric, and the probability distribution of the test metric for multichannel SAR-GMTI has the complex central Wishart distribution of 1×1 case, namely the X^2 distribution. The theory foundation offers the possibility to construct the united multi-channel SAR-GMTI detector, and derives the constant false alarm rate (CFAR) detector tests for separating moving targets from clutter. 展开更多
关键词 multi-channel SAR-GMTI canonical framework displaced phase center antenna along-track interferometrie statistics analysis.
下载PDF
RECONSTRUCT AZIMUTH SIGNAL AND SUPPRESS INTERBEAM AMBIGUITIES OF SPCMB SAR WITH HYBRID FILTERBANK
6
作者 Song Xiufeng Yu Weidong 《Journal of Electronics(China)》 2008年第3期324-329,共6页
Conventional Synthetic Aperture Radar (SAR) systems cannot obtain high-resolution and wide-swath illumination area due to the well-known minimum antenna area constraint. Single Phase Center MultiBeam (SPCMB) technique... Conventional Synthetic Aperture Radar (SAR) systems cannot obtain high-resolution and wide-swath illumination area due to the well-known minimum antenna area constraint. Single Phase Center MultiBeam (SPCMB) technique can overcome this limitation by adding spatial sampling through multiple receivers in azimuth direction. Unfortunately, this approach will lead to an increase of azimuth ambiguities (interbeam ambiguities), because each receive beam’s mainlobe overlaps with the other ones’ sidelobes. This paper proves that the front part of SPCMB SAR systems can be considered to be a hybrid filterbank. Therefore, the azimuth signal can be reconstructed and the interbeam am- biguities can be effectively suppressed by a well-designed hybrid filterbank. 展开更多
关键词 Synthetic Aperture Radar (SAR) High-resolution wide-swath Signal phase Center MultiBeam (SPCMB) Signal reconstruction Hybrid filterbank
下载PDF
NOISE AMPLIFICATION ANALYSIS AND COMPARISON OF TWO PERIODIC NONUNIFORM SAMPLING RECONSTRUCTION METHODS USED IN DPCA SAR
7
作者 Song Xiufeng Yu Weidong 《Journal of Electronics(China)》 2008年第6期786-796,共11页
General Sampling Expansion Reconstruction Method (GSERM) and Digital Spectrum Reconstruction Method (DSRM), which prove effective to reconstruct azimuth signal of Displaced Phase Center Apertures (DPCA) Synthetic Aper... General Sampling Expansion Reconstruction Method (GSERM) and Digital Spectrum Reconstruction Method (DSRM), which prove effective to reconstruct azimuth signal of Displaced Phase Center Apertures (DPCA) Synthetic Aperture Radar (SAR) system from its Periodic Non-Uniform Sampling (PNUS) data sequences, would amplify the noise and sidelobe clutter simultaneously in the reconstruction. This paper formulates the relation of the system transfer matrixes of the above two methods, gives the properties, such as periodicity, symmetry, and time-shift property, of their Noise and Sidelobe Clutter Amplification Factor (NSCAF), and discovers that DSRM is more sensitive than GSERM in the white noise environment. In addition, criteria based on initial sampling point analysis for the robust PRF selection are suggested. Computer simulation results support these con-clusions. 展开更多
关键词 Synthetic Aperture Radar (SAR) Displaced phase Center Apertures (DPCA) Periodic NonUniform Sampling (PNUS) Noise Sidelobe clutter
下载PDF
Spaceborne GPS receiver antenna phase center offset and variation estimation for the Shiyan 3 satellite 被引量:11
8
作者 Gu Defeng Lai Yuwang +2 位作者 Liu Junhong Ju Bing Tu Jia 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第5期1335-1344,共10页
In determining the orbits of low Earth orbit (LEO) satellites using spaceborne GPS, the errors caused by receiver antenna phase center offset (PCO) and phase center variations (PCVs) are gradually becoming a maj... In determining the orbits of low Earth orbit (LEO) satellites using spaceborne GPS, the errors caused by receiver antenna phase center offset (PCO) and phase center variations (PCVs) are gradually becoming a major limiting factor for continued improvements to accuracy. Shiyan 3, a small satellite mission for space technology experimentation and climate exploration, was developed by China and launched on November 5, 2008. The dual-frequency GPS receiver payload delivers 1 Hz data and provides the basis for precise orbit determination within the range of a few centimeters. The antenna PCO and PCV error characteristics and the principles influencing orbit determination are analyzed. The feasibility of PCO and PCV estimation and compensation in different directions is demonstrated through simulation and in-flight tests. The values of receiver antenna PCO and PCVs for Gravity Recovery and Climate Experiment (GRACE) and Shiyan 3 satellites are estimated from one month of data. A large and stable antenna PCO error, reaching up to 10.34 cm in the z-direction, is found with the Shiyan 3 satellite. The PCVs on the Shiyan 3 satellite are estimated and reach up to 3.0 cm, which is slightly larger than that of GRACE satellites. Orbit validation clearly improved with independent k-band ranging (KBR) and satellite laser ranging (SLR) measurements. For GRACE satellites, the average root mean square (RMS) of KBR residuals improved from 1.01 cm to 0.88 cm. For the Shiyan 3 satellite, the average RMS of SLR residuals improved from 4.95 cm to 4.06 cm. 展开更多
关键词 GRACE phase center offset phase center variations Shiyan 3 Spaceborne GPS
原文传递
Phase Residual Estimations for PCVs of Spaceborne GPS Receiver Antenna and Their Impacts on Precise Orbit Determination of GRACE Satellites 被引量:4
9
作者 TU Jia GU Defeng +1 位作者 WU Yi YI Dongyun 《Chinese Journal of Aeronautics》 SCIE EI CSCD 2012年第4期631-639,共9页
In-flight phase center systematic errors of global positioning system(GPS) receiver antenna are the main restriction for improving the precision of precise orbit determination using dual-frequency GPS.Residual appro... In-flight phase center systematic errors of global positioning system(GPS) receiver antenna are the main restriction for improving the precision of precise orbit determination using dual-frequency GPS.Residual approach is one of the valid methods for in-flight calibration of GPS receiver antenna phase center variations(PCVs) from ground calibration.In this paper,followed by the correction model of spaceborne GPS receiver antenna phase center,ionosphere-free PCVs can be directly estimated by ionosphere-free carrier phase post-fit residuals of reduced dynamic orbit determination.By the data processing of gravity recovery and climate experiment(GRACE) satellites,the following conclusions are drawn.Firstly,the distributions of ionosphere-free carrier phase post-fit residuals from different periods have the similar systematic characteristics.Secondly,simulations show that the influence of phase residual estimations for ionosphere-free PCVs on orbit determination can reach the centimeter level.Finally,it is shown by in-flight data processing that phase residual estimations of current period could not only be used for the calibration for GPS receiver antenna phase center of foretime and current period,but also be used for the forecast of ionosphere-free PCVs in future period,and the accuracy of orbit determination can be well improved. 展开更多
关键词 global positioning system precise orbit determination phase center variations phase residual estimation GRACE
原文传递
Quality assessment of onboard GPS receiver and its combination with DORIS and SLR for Haiyang 2A precise orbit determination 被引量:13
10
作者 GUO Jing ZHAO QiLe +3 位作者 GUO Xiang LIU XiangLin LIU JingNan ZHOU Quan 《Science China Earth Sciences》 SCIE EI CAS CSCD 2015年第1期138-150,共13页
The GPS,DORIS,and SLR instruments are installed on Haiyang 2A(HY2A)altimetry satellite for Precise Orbit Determination(POD).Among these instruments,the codeless GPS receiver is the state-of-art Chinese indigenous onbo... The GPS,DORIS,and SLR instruments are installed on Haiyang 2A(HY2A)altimetry satellite for Precise Orbit Determination(POD).Among these instruments,the codeless GPS receiver is the state-of-art Chinese indigenous onboard receiver,and it is the first one successfully used for Low Earth Orbit(LEO)satellite.Firstly,the contribution assesses the performance of the receiver through an analysis of data integrity,numbers of all tracked and valid measurements as well as multipath errors.The receiver generally shows good performance and quality despite a few flaws.For example,L2 observations are often missing in low elevations,particularly during the ascent of GPS satellites,and the multipath errors of P1 show a slightly abnormal pattern.Secondly,the PCO(Phase Center Offset)and PCV(Phase Center Variation)of the antenna of the GPS receiver are determined in this contribution.A significant leap for Z-component of PCO up to-1.2 cm has been found on 10 October 2011.Thirdly,the obtained PCO and PCV maps are used for GPS only POD solutions.The post-fit residuals of ionosphere-free phase combinations reduce almost 50%,and the radial orbit differences with respect to CNES(Centre National d’Etudes Spatiales)Precise Orbit Ephemeris(POEs)improve about 13.9%.The orbits are validated using the SLR data,and the RMS of SLR Observed minus Computed(O-C)residuals reduces from 17.5 to 15.9 mm.These improvements are with respect to the orbits determined without PCO and PCV.Fourthly,six types of solutions are determined for HY2A satellite using different combinations of GPS,DORIS,and SLR data.Statistics of SLR O-C residuals and cross-comparison of orbits obtained in the contribution and the CNES POEs indicate that the radial accuracy of these orbits is at the 1.0 cm level for HY2A orbit solutions,which is much better than the scientific requirements of this mission.It is noticed that the GPS observations dominate the achievable accuracy of POD,and the combination of multiple types of observations can reduce orbit errors caused by data gaps and maintain more stable and continuous orbits. 展开更多
关键词 Haiyang 2A GPS receiver MULTIPATH precise orbit determination phase center offset phase center variations DORIS SLR
原文传递
Precise orbit determination for BDS satellites 被引量:12
11
作者 Qile Zhao Jing Guo +4 位作者 Chen Wang Yifei Lyu Xiaolong Xu Chao Yang Junqiang Li 《Satellite Navigation》 2022年第1期1-24,I0002,共25页
Since the frst pair of BeiDou satellites was deployed in 2000,China has made continuous eforts to establish its own independent BeiDou Navigation Satellite System(BDS)to provide the regional radio determination satell... Since the frst pair of BeiDou satellites was deployed in 2000,China has made continuous eforts to establish its own independent BeiDou Navigation Satellite System(BDS)to provide the regional radio determination satellite service as well as regional and global radio navigation satellite services,which rely on the high quality of orbit and clock products.This article summarizes the achievements in the precise orbit determination(POD)of BDS satellites in the past decade with the focus on observation and orbit dynamic models.First,the disclosed metadata of BDS satellites is presented and the contribution to BDS POD is addressed.The complete optical properties of the satellite bus as well as solar panels are derived based on the absorbed parameters as well the material properties.Secondly,the status and tracking capabilities of the L-band data from accessible ground networks are presented,while some low earth orbiter satellites with onboard BDS tracking capability are listed.The topological structure and measurement scheme of BDS Inter-Satellite-Link(ISL)data are described.After highlighting the progress on observation models as well as orbit perturbations for BDS,e.g.,phase center corrections,satellite attitude,and solar radiation pressure,diferent POD strategies used for BDS are summarized.In addition,the urgent requirement for error modeling of the ISL data is emphasized based on the analysis of the observation noises,and the incompatible characteristics of orbit and clock derived with L-band and ISL data are illuminated and discussed.The further researches on the improvement of phase center calibration and orbit dynamic models,the refnement of ISL observation models,and the potential contribution of BDS to the estimation of geodetic parameters based on L-band or ISL data are identifed.With this,it is promising that BDS can achieve better performance and provides vital contributions to the geodesy and navigation. 展开更多
关键词 BDS Orbit and clock Solar radiation pressure ATTITUDE phase center correction Inter-satellite-link
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部