期刊文献+
共找到286篇文章
< 1 2 15 >
每页显示 20 50 100
Self‑Assembly of Binderless MXene Aerogel for Multiple‑Scenario and Responsive Phase Change Composites with Ultrahigh Thermal Energy Storage Density and Exceptional Electromagnetic Interference Shielding
1
作者 Chuanbiao Zhu Yurong Hao +8 位作者 Hao Wu Mengni Chen Bingqing Quan Shuang Liu Xinpeng Hu Shilong Liu Qinghong Ji Xiang Lu Jinping Qu 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期367-382,共16页
The severe dependence of traditional phase change materials(PCMs)on the temperature-response and lattice deficiencies in versatility cannot satisfy demand for using such materials in complex application scenarios.Here... The severe dependence of traditional phase change materials(PCMs)on the temperature-response and lattice deficiencies in versatility cannot satisfy demand for using such materials in complex application scenarios.Here,we introduced metal ions to induce the self-assembly of MXene nanosheets and achieve their ordered arrangement by combining suction filtration and rapid freezing.Subsequently,a series of MXene/K^(+)/paraffin wax(PW)phase change composites(PCCs)were obtained via vacuum impregnation in molten PW.The prepared MXene-based PCCs showed versatile applications from macroscale technologies,successfully transforming solar,electric,and magnetic energy into thermal energy stored as latent heat in the PCCs.Moreover,due to the absence of binder in the MXene-based aerogel,MK3@PW exhibits a prime solar-thermal conversion efficiency(98.4%).Notably,MK3@PW can further convert the collected heat energy into electric energy through thermoelectric equipment and realize favorable solar-thermal-electric conversion(producing 206 mV of voltage with light radiation intensity of 200 mw cm^(−2)).An excellent Joule heat performance(reaching 105℃with an input voltage of 2.5 V)and responsive magnetic-thermal conversion behavior(a charging time of 11.8 s can achieve a thermal insulation effect of 285 s)for contactless thermotherapy were also demonstrated by the MK3@PW.Specifically,as a result of the ordered arrangement of MXene nanosheet self-assembly induced by potassium ions,MK3@PW PCC exhibits a higher electromagnetic shielding efficiency value(57.7 dB)than pure MXene aerogel/PW PCC(29.8 dB)with the same MXene mass.This work presents an opportunity for the multi-scene response and practical application of PCMs that satisfy demand of next-generation multifunctional PCCs. 展开更多
关键词 Self-assembly Multiple-scenario phase change composites Thermal energy storage Electromagnetic interference shielding
下载PDF
Heat transfer enhanced inorganic phase change material compositing carbon nanotubes for battery thermal management and thermal runaway propagation mitigation
2
作者 Xinyi Dai Ping Ping +4 位作者 Depeng Kong Xinzeng Gao Yue Zhang Gongquan Wang Rongqi Peng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期226-238,I0006,共14页
Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase chan... Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase change material(PCM)with nonflammability has the potential to achieve this dual function.This study proposed an encapsulated inorganic phase change material(EPCM)with a heat transfer enhancement for battery systems,where Na_(2)HPO_(4)·12H_(2)O was used as the core PCM encapsulated by silica and the additive of carbon nanotube(CNT)was applied to enhance the thermal conductivity.The microstructure and thermal properties of the EPCM/CNT were analyzed by a series of characterization tests.Two different incorporating methods of CNT were compared and the proper CNT adding amount was also studied.After preparation,the battery thermal management performance and TR propagation mitigation effects of EPCM/CNT were further investigated on the battery modules.The experimental results of thermal management tests showed that EPCM/CNT not only slowed down the temperature rising of the module but also improved the temperature uniformity during normal operation.The peak battery temperature decreased from 76℃to 61.2℃at 2 C discharge rate and the temperature difference was controlled below 3℃.Moreover,the results of TR propagation tests demonstrated that nonflammable EPCM/CNT with good heat absorption could work as a TR barrier,which exhibited effective mitigation on TR and TR propagation.The trigger time of three cells was successfully delayed by 129,474 and 551 s,respectively and the propagation intervals were greatly extended as well. 展开更多
关键词 Inorganic phase change material Carbon nanotube Battery thermal management Thermal runaway propagation Fire resistance ENCAPSULATION
下载PDF
Shikimic acid accelerates phase change and flowering in Chinese jujube
3
作者 Xianwei Meng Zhiguo Liu +11 位作者 Li Dai Weiqiang Zhao Jiurui Wang Lili Wang Yuanpei Cui Ying Li Yinshan Cui Yao Zhang Luyao Wang Fengjiao Yu Jin Zhao Mengjun Liu 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第2期413-424,共12页
The juvenile-to-adult phase change with first flowering as the indicator plays a crucial role in the lifecycle of fruit trees. However, the molecular mechanisms underlying phase change in fruit trees remain largely un... The juvenile-to-adult phase change with first flowering as the indicator plays a crucial role in the lifecycle of fruit trees. However, the molecular mechanisms underlying phase change in fruit trees remain largely unknown. Shikimic acid (ShA) pathway is a main metabolic pathway closely related to the synthesis of hormones and many important secondary metabolites participating in plant phase change. So,whether ShA regulates phase change in plants is worth clarifying. Here, the distinct morphological characteristics and the underlying mechanisms of phase change in jujube (Ziziphus jujuba Mill.), an important fruit tree native to China with nutritious fruit and outstanding tolerance abiotic stresses, were clarified. A combined transcriptome and metabolome analysis found that ShA is positively involved in jujube(Yuhong’×Xing 16’) phase change. The genes in the upstream of ShA synthesis pathway (ZjDAHPS, ZjDHQS and ZjSDH), the contents of ShA and the downstream secondary metabolites like phenols were significantly upregulated in the phase change period. Further, the treatment of spraying exogenous ShA verified that ShA at a very low concentration (60 mg·L^(-1)) can substantially speed up the phase change and flowering of jujube and other tested plants including Arabidopsis, tomato and wheat. The exogenous ShA (60 mg·L^(-1)) treatment in jujube seedlings could increase the accumulation of endogenous ShA, enhance leaf photosynthesis and the synthesis of phenols especially flavonoids and phenolic acids, and promote the expression of genes (ZjCOs, ZjNFYs and ZjPHYs) involved in flowering pathway. Basing on above results, we put forward a propose for the underlying mechanism of ShA regulating phase change, and a hypothesis that ShA could be considered a phytohormone-like substance because it is endogenous, ubiquitous, movable and highly efficient at very low concentrations. This study highlights the critical role of ShA in plant phase change and its phytohormone-like properties. 展开更多
关键词 Ziziphus jujuba Mill. phase change FLOWERING Shikimic acid Transcriptome METABOLOME
下载PDF
Recent advances in graphene-based phase change composites for thermal energy storage and management
4
作者 Qiang Zhu Pin Jin Ong +4 位作者 Si Hui Angela Goh Reuben J.Yeo Suxi Wang Zhiyuan Liu Xian Jun Loh 《Nano Materials Science》 EI CAS CSCD 2024年第2期115-138,共24页
Energy storage and conservation are receiving increased attention due to rising global energy demands.Therefore,the development of energy storage materials is crucial.Thermal energy storage(TES)systems based on phase ... Energy storage and conservation are receiving increased attention due to rising global energy demands.Therefore,the development of energy storage materials is crucial.Thermal energy storage(TES)systems based on phase change materials(PCMs)have increased in prominence over the past two decades,not only because of their outstanding heat storage capacities but also their superior thermal energy regulation capability.However,issues such as leakage and low thermal conductivity limit their applicability in a variety of settings.Carbon-based materials such as graphene and its derivatives can be utilized to surmount these obstacles.This study examines the recent advancements in graphene-based phase change composites(PCCs),where graphene-based nanostructures such as graphene,graphene oxide(GO),functionalized graphene/GO,and graphene aerogel(GA)are incorporated into PCMs to substantially enhance their shape stability and thermal conductivity that could be translated to better storage capacity,durability,and temperature response,thus boosting their attractiveness for TES systems.In addition,the applications of these graphene-based PCCs in various TES disciplines,such as energy conservation in buildings,solar utilization,and battery thermal management,are discussed and summarized. 展开更多
关键词 phase change material NANOCOMPOSITES Solar energy Sustainable energy Thermo-regulation
下载PDF
Enhanced properties of stone coal-based composite phase change materials for thermal energy storage
5
作者 Baoshan Xie Huan Ma +1 位作者 Chuanchang Li Jian Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期206-215,共10页
Phase change materials (PCMs) can be incorporated with low-cost minerals to synthesize composites for thermal energy storage in building applications.Stone coal (SC) after vanadium extraction treatment shows potential... Phase change materials (PCMs) can be incorporated with low-cost minerals to synthesize composites for thermal energy storage in building applications.Stone coal (SC) after vanadium extraction treatment shows potential for secondary utilization in composite preparation.We prepared SC-based composite PCMs with SC as a matrix,stearic acid (SA) as a PCM,and expanded graphite (EG) as an additive.The combined roasting and acid leaching treatment of raw SC was conducted to understand the effect of vanadium extraction on promoting loading capacity.Results showed that the combined treatment of roasting at 900℃ and leaching increased the SC loading of the composite by 6.2%by improving the specific surface area.The loading capacity and thermal conductivity of the composite obviously increased by 127%and 48.19%,respectively,due to the contribution of 3wt% EG.These data were supported by the high load of 66.69%and thermal conductivity of 0.59 W·m^(-1)·K-1of the designed composite.The obtained composite exhibited a phase change temperature of 52.17℃,melting latent heat of 121.5 J·g^(-1),and good chemical compatibility.The SC-based composite has prospects in building applications exploiting the secondary utilization of minerals. 展开更多
关键词 thermal energy storage phase change material stone coal vanadium extraction secondary utilization
下载PDF
Actively tuning anisotropic light-matter interaction in biaxial hyperbolic materialα-MoO_(3) using phase change material VO_(2) and graphene
6
作者 周昆 胡杨 +2 位作者 吴必园 仲晓星 吴小虎 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期631-638,共8页
Anisotropic hyperbolic phonon polaritons(PhPs)in natural biaxial hyperbolic materialα-MoO_(3) has opened up new avenues for mid-infrared nanophotonics,while active tunability ofα-MoO_(3) PhPs is still an urgent prob... Anisotropic hyperbolic phonon polaritons(PhPs)in natural biaxial hyperbolic materialα-MoO_(3) has opened up new avenues for mid-infrared nanophotonics,while active tunability ofα-MoO_(3) PhPs is still an urgent problem necessarily to be solved.In this study,we present a theoretical demonstration of actively tuningα-MoO_(3) PhPs using phase change material VO_(2) and graphene.It is observed thatα-MoO_(3) PhPs are greatly dependent on the propagation plane angle of PhPs.The insulator-to-metal phase transition of VO_(2) has a significant effect on the hybridization PhPs of theα-MoO_(3)/VO_(2) structure and allows to obtain actively tunableα-MoO_(3) PhPs,which is especially obvious when the propagation plane angle of PhPs is 900.Moreover,when graphene surface plasmon sources are placed at the top or bottom ofα-MoO_(3) inα-MoO_(3)/VO_(2)structure,tunable coupled hyperbolic plasmon-phonon polaritons inside its Reststrahlen bands(RB s)and surface plasmonphonon polaritons outside its RBs can be achieved.In addition,the above-mentionedα-MoO_(3)-based structures also lead to actively tunable anisotropic spontaneous emission(SE)enhancement.This study may be beneficial for realization of active tunability of both PhPs and SE ofα-MoO_(3),and facilitate a deeper understanding of the mechanisms of anisotropic light-matter interaction inα-MoO_(3) using functional materials. 展开更多
关键词 light-matter interaction hyperbolic material phase change material GRAPHENE
下载PDF
Controllable thermal rectification design for buildings based on phase change composites
7
作者 Hengbin Ding Xiaoshi Li +2 位作者 Tianhang Li Xiaoyong Zhao He Tian 《Journal of Semiconductors》 EI CAS CSCD 2024年第2期40-45,共6页
Phase-change material(PCM)is widely used in thermal management due to their unique thermal behavior.However,related research in thermal rectifier is mainly focused on exploring the principles at the fundamental device... Phase-change material(PCM)is widely used in thermal management due to their unique thermal behavior.However,related research in thermal rectifier is mainly focused on exploring the principles at the fundamental device level,which results in a gap to real applications.Here,we propose a controllable thermal rectification design towards building applications through the direct adhesion of composite thermal rectification material(TRM)based on PCM and reduced graphene oxide(rGO)aerogel to ordinary concrete walls(CWs).The design is evaluated in detail by combining experiments and finite element analysis.It is found that,TRM can regulate the temperature difference on both sides of the TRM/CWs system by thermal rectification.The difference in two directions reaches to 13.8 K at the heat flow of 80 W/m^(2).In addition,the larger the change of thermal conductivity before and after phase change of TRM is,the more effective it is for regulating temperature difference in two directions.The stated technology has a wide range of applications for the thermal energy control in buildings with specific temperature requirements. 展开更多
关键词 phase change composites controllable thermal rectification building applications
下载PDF
Comparative Analysis of Reaction to Fire and Flammability of Hemp Shives Insulation Boards with Incorporated Microencapsulated Phase Change Materials
8
作者 Inga Zotova Edgars Kirilovs Laura Ziemele 《Journal of Renewable Materials》 EI CAS 2024年第3期603-613,共11页
Nowadays buildings contain innovative materials,materials from local resources,production surpluses and rapidly renewable natural resources.Phase Change Materials(PCM)are one such group of novel materials which reduce... Nowadays buildings contain innovative materials,materials from local resources,production surpluses and rapidly renewable natural resources.Phase Change Materials(PCM)are one such group of novel materials which reduce building energy consumption.With the wider availability of microencapsulated PCM,there is an opportunity to develop a new type of insulating materials,combinate PCM with traditional insulation materials for latent heat energy storage.These materials are typically flammable and are located on the interior wall finishing yet there has been no detailed assessment of their fire performance.In this research work prototypes of low-density insulating boards for indoor spaces from hemp shives using carbamide resin binder and cold pressing were studied.Bench-scale cone calorimeter tests were conducted to evaluate fire risk,with a focus on assessing material flammability properties and the influence of PCM on the results.In this research,the amount of smoke,heat release rate,effective heat of combustion,specific extinction coefficient,mass loss,carbon dioxide yield,specific loss factor,ignition time of hemp straws samples and samples of hemp straws with 10%and without PCM admixture were compared.There is a risk of flammability for PCM and their fire reaction has not been evaluated when incorporating PCM into interior wall finishing boards.The obtained results can be used by designers to balance the potential energy savings of using PCM with a more complete understanding and predictability of the associated fire risk when using the proposed boards.It also allows for appropriate risk mitigation strategies. 展开更多
关键词 Encapsuled phase change material renewable resources reaction to fire FLAMMABILITY
下载PDF
A Thermoregulatory Flexible Phase Change Nonwoven for All‑Season High‑Efficiency Wearable Thermal Management 被引量:2
9
作者 Hanqing Liu Feng Zhou +9 位作者 Xiaoyu Shi Keyan Sun Yan Kou Pratteek Das Yangeng Li Xinyu Zhang Srikanth Mateti Ying Chen Zhong‑Shuai Wu Quan Shi 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第2期259-270,共12页
Phase change materials have a key role for wearable thermal management,but suffer from poor water vapor permeability,low enthalpy value and weak shape stability caused by liquid phase leakage and intrinsic rigidity of... Phase change materials have a key role for wearable thermal management,but suffer from poor water vapor permeability,low enthalpy value and weak shape stability caused by liquid phase leakage and intrinsic rigidity of solid–liquid phase change materials.Herein,we report for the first time a versatile strategy for designed assembly of high-enthalpy flexible phase change nonwovens(GB-PCN)by wet-spinning hybrid grapheneboron nitride(GB)fiber and subsequent impregnating paraffins(e.g.,eicosane,octadecane).As a result,our GB-PCN exhibited an unprecedented enthalpy value of 206.0 J g^(−1),excellent thermal reliability and anti-leakage capacity,superb thermal cycling ability of 97.6%after 1000 cycles,and ultrahigh water vapor permeability(close to the cotton),outperforming the reported PCM films and fibers to date.Notably,the wearable thermal management systems based on GB-PCN for both clothing and face mask were demonstrated,which can maintain the human body at a comfortable temperature range for a significantly long time.Therefore,our results demonstrate huge potential of GB-PCN for human-wearable passive thermal management in real scenarios. 展开更多
关键词 phase change materials GRAPHENE Boron nitride NONWOVEN Wearable thermal management
下载PDF
Flexible,Highly Thermally Conductive and Electrically Insulating Phase Change Materials for Advanced Thermal Management of 5G Base Stations and Thermoelectric Generators 被引量:2
10
作者 Ying Lin Qi Kang +4 位作者 Yijie Liu Yingke Zhu Pingkai Jiang Yiu‑Wing Mai Xingyi Huang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第3期1-15,共15页
Thermal management has become a crucial problem for high-power-density equipment and devices.Phase change materials(PCMs)have great prospects in thermal management applications because of their large capacity of heat ... Thermal management has become a crucial problem for high-power-density equipment and devices.Phase change materials(PCMs)have great prospects in thermal management applications because of their large capacity of heat storage and isothermal behavior during phase transition.However,low intrinsic thermal conductivity,ease of leakage,and lack of flexibility severely limit their applications.Solving one of these problems often comes at the expense of other performance of the PCMs.In this work,we report core–sheath structured phase change nanocomposites(PCNs)with an aligned and interconnected boron nitride nanosheet network by combining coaxial electrospinning,electrostatic spraying,and hot-pressing.The advanced PCN films exhibit an ultrahigh thermal conductivity of 28.3 W m^(-1)K^(-1)at a low BNNS loading(i.e.,32 wt%),which thereby endows the PCNs with high enthalpy(>101 J g^(-1)),outstanding ductility(>40%)and improved fire retardancy.Therefore,our core–sheath strategies successfully balance the trade-off between thermal conductivity,flexibility,and phase change enthalpy of PCMs.Further,the PCNs provide powerful cooling solutions on 5G base station chips and thermoelectric generators,displaying promising thermal management applications on high-power-density equipment and thermoelectric conversion devices. 展开更多
关键词 Coaxial electrospinning Boron nitride nanosheets phase change nanocomposites Thermal conductivity Thermal management
下载PDF
Emerging low-density polyethylene/paraffin wax/aluminum composite as a form-stable phase change thermal interface material 被引量:1
11
作者 Chuanchang Li Weixuan Wang +2 位作者 Xiaoliang Zeng Chunxuan Liu Rong Sun 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第4期772-781,共10页
Thermal interface materials(TIMs) play a vital role in the thermal management of electronic devices and can significantly reduce thermal contact resistance(TCR). The TCR between the solid–liquid contact surface is mu... Thermal interface materials(TIMs) play a vital role in the thermal management of electronic devices and can significantly reduce thermal contact resistance(TCR). The TCR between the solid–liquid contact surface is much smaller than that of the solid–solid contact surface, but conventional solid–liquid phase change materials are likely to cause serious leakage. Therefore, this work has prepared a new formstable phase change thermal interface material. Through the melt blending of paraffin wax(PW) and low-density polyethylene(LDPE), the stability is improved and it has an excellent coating effect on PW. The addition of aluminum(Al) powder improves the low thermal conductivity of PW/LDPE, and the addition of 15wt% Al powder improves the thermal conductivity of the internal structure of the matrix by 67%. In addition, the influence of the addition of Al powder on the internal structure, thermal properties, and phase change behavior of the PW/LDPE matrix was systematically studied. The results confirmed that the addition of Al powder improved the thermal conductivity of the material without a significant impact on other properties, and the thermal conductivity increased with the increase of Al addition. Therefore, morphologically stable PW/LDPE/Al is an important development direction for TIMs. 展开更多
关键词 paraffin wax low-density polyethylene phase change materials thermal interface materials form stability
下载PDF
Data-driven optimization study of the multi-relaxation-time lattice Boltzmann method for solid-liquid phase change 被引量:1
12
作者 Yanlin REN Zhaomiao LIU +1 位作者 Zixiao KANG Yan PANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第1期159-172,共14页
Sharp phase interfaces and accurate temperature distributions are important criteria in the simulation of solid-liquid phase changes.The multi-relaxation-time lattice Boltzmann method(MRT-LBM)shows great numerical per... Sharp phase interfaces and accurate temperature distributions are important criteria in the simulation of solid-liquid phase changes.The multi-relaxation-time lattice Boltzmann method(MRT-LBM)shows great numerical performance during simulation;however,the value method of the relaxation parameters needs to be specified.Therefore,in this study,a random forest(RF)model is used to discriminate the importance of different relaxation parameters to the convergence,and a support vector machine(SVM)is used to explore the decision boundary of the convergent samples in each dimensional model.The results show that the convergence of the samples is consistent with the sign of the decision number,and two types of the numerical deviations appear,i.e.,the phase mushy zone and the non-physical heat transfer.The relaxation parameters chosen on the decision boundary can further suppress the numerical bias and improve numerical accuracy. 展开更多
关键词 solid-liquid phase change lattice Boltzmann method(LBM) relaxation parameter random forest(RF) support vector machine(SVM)
下载PDF
Research on Performance Optimization of Liquid Cooling and Composite Phase Change Material Coupling Cooling Thermal Management System for Vehicle Power Battery 被引量:1
13
作者 Gang Wu Feng Liu +3 位作者 Sijie Li Na Luo Zhiqiang Liu Yuqaing Li 《Journal of Renewable Materials》 SCIE EI 2023年第2期707-730,共24页
The serpentine tube liquid cooling and composite PCM coupled cooling thermal management system is designed for 18650 cylindrical power batteries,with the maximum temperature and temperature difference of the power pac... The serpentine tube liquid cooling and composite PCM coupled cooling thermal management system is designed for 18650 cylindrical power batteries,with the maximum temperature and temperature difference of the power pack within the optimal temperature operating range as the target.The initial analysis of the battery pack at a 5C discharge rate,the influence of the single cell to cooling tube distance,the number of cooling tubes,inlet coolant temperature,the coolant flow rate,and other factors on the heat dissipation performance of the battery pack,initially determined a reasonable value for each design parameter.A control strategy is used to regulate the inlet flow rate and coolant temperature of the liquid cooling system in order to make full use of the latent heat of the composite PCM and reduce the pump’s energy consumption.The simulation results show that the maximum battery pack temperature of 309.8 K and the temperature difference of 4.6 K between individual cells with the control strategy are in the optimal temperature operating range of the power battery,and the utilization rate of the composite PCM is up to 90%. 展开更多
关键词 Power battery thermal management phase change materials liquid cooling
下载PDF
Experimental study on thermal and mechanical properties of tailings-based cemented paste backfill with CaCl_(2)·6H_(2)O/expanded vermiculite shape stabilized phase change materials 被引量:1
14
作者 Xiaoyan Zhang Tianrun Cao +3 位作者 Lang Liu Baoyun Bu Yaping Ke Qiangqiang Du 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第2期250-259,共10页
CaCl_(2)·6H_(2)O/expanded vermiculite shape stabilized phase change materials(CEV)was prepared by atmospheric impregnation method.Using gold mine tailings as aggregate of cemented paste backfill(CPB)material,the ... CaCl_(2)·6H_(2)O/expanded vermiculite shape stabilized phase change materials(CEV)was prepared by atmospheric impregnation method.Using gold mine tailings as aggregate of cemented paste backfill(CPB)material,the CPB with CEV added was prepared,and the specific heat capacity,thermal conductivity,and uniaxial compressive strength(UCS)of CPB with different cement-tailing ratios and CEV addition ratios were tested,the influence of the above variables on the thermal and mechanical properties of CPB was analyzed.The results show that the maximum encapsulation capacity of expanded vermiculite for CaCl_(2)·6H_(2)O is about 60%,and the melting and solidification enthalpies of CEV can reach 98.87 J/g and 97.56 J/g,respectively.For the CPB without CEV,the specific heat capacity,thermal conductivity,and UCS decrease with the decrease of cement-tailing ratio.For the CPB with CEV added,with the increase of CEV addition ratio,the specific heat capacity increases significantly,and the sensible heat storage capacity and latent heat storage capacity can be increased by at least 10.74%and 218.97%respectively after adding 12%CEV.However,the addition of CEV leads to the increase of pores,and the thermal conductivity and UCS both decrease with the increase of CEV addition.When cement-tailing ratio is 1:8 and 6%,9%,and 12%of CEV are added,the 28-days UCS of CPB is less than 1 MPa.Considering the heat storage capacity and cost price of backfill,the recommended proportion scheme of CPB material presents cement-tailing ratio of 1:6 and 12%CEV,and the most recommended heat storage/release temperature cycle range of CPB with added CEV is from 20 to 40℃.This work can provide theoretical basis for the utilization of heat storage backfill in green mines. 展开更多
关键词 CaCl_(2)·6H_(2)O/expanded vermiculite shape stabilized phase change materials cemented paste backfill thermal property mechanical property
下载PDF
Design of a graphene oxide@melamine foam/polyaniline@erythritol composite phase change material for thermal energy storage
15
作者 Jianhui Zhou Xin Lai +3 位作者 Jianfeng Hu Haijie Qi Shan Liu Zhengguo Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第6期282-290,共9页
At present,only a single modification method is adopted to improve the shortcomings of erythritol(ET)as a phase change material(PCM).Compared with a single modification method,the synergistic effect of multiple modifi... At present,only a single modification method is adopted to improve the shortcomings of erythritol(ET)as a phase change material(PCM).Compared with a single modification method,the synergistic effect of multiple modification methods can endow ET with comprehensive performance to meet the purpose of package,supercooling reduction,and enhancement of thermal conductivity.In this work,we innovatively combine graphene oxide(GO)nanosheet modified melamine foam(MF)and polyaniline(PANI)to construct a novel ET-based PCM by blending and porous material adsorption modification.PANI as the nucleation center can enhance the crystallization rate,thereby reducing the supercooling of ET.Meanwhile,GO@MF foam can not only be used as a porous support material to encapsulate ET but also as a heat conduction reinforcement to improve heat storage and release rate.As a result,the supercooling of GO@MF/PANI@ET(GMPET)composite PCM decreases from 91.2℃ of pure ET to 57.9℃ and its thermal conductivity(1.58 W·m^(-1)·K^(-1))is about three times higher than that of pure ET(0.57 W·m^(-1)·K^(-1)).Moreover,after being placed at 140℃ for 2 h,there is almost no ET leakage in the GMPET composite PCM,and the mass loss ratio is less than 0.75%.In addition,the GMPET composite PCM displays a high melting enthalpy of about 259 J·g^(-1) and a high initial mass loss temperature of about 198℃.Even after the 200th cycling test,the phase transition temperature and the latent heat storage capacity of the GMPET PCM all remain stable.This work offers an effective and promising strategy to design ET-based composite PCM for the field of energy storage. 展开更多
关键词 Composites ENTHALPY Heat conduction NUCLEATION phase change
下载PDF
A CO_(2)-controllable phase change absorbent solvent used to waste recycling of dining lampblack
16
作者 Wenjian Yue Xiaojiang Li +4 位作者 Junhao Jing Li Tong Na Wang Hongsheng Lu Zhiyu Huang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第9期110-117,共8页
Dining lampblack as a source of atmospheric pollution,urban residents had to spend a lot of economic costs all year round to solve its impact.However,traditional treatment methods often carry the risk of secondary pol... Dining lampblack as a source of atmospheric pollution,urban residents had to spend a lot of economic costs all year round to solve its impact.However,traditional treatment methods often carry the risk of secondary pollution.The use of phase change absorption solvent(PCAS)controlled by CO_(2)can effectively absorb the oily components in dining lampblack,and smoothly avoid the generation of secondary pollutants and squandering of resources.The reversibility of PCASs under CO_(2)control was explained by pH changes and macroscopic visualizations.The absorption effects of favorable absorbents and PCASs on dining lampblack were compared and analyzed.The fatty acid(FA)in the oil absorption mixture was desorbed by interacting with D230.The results of GC/MS analysis on the oil components separated by desorption showed that the desorption of PCASs was effective for these refractory oil components.FAs can be enriched and applied to the subsequent dining lampblack treatment link to realize the waste recycling.In addition,the absorption and desorption of oily components by PCASs were combined with the CO_(2)-controlled phase transformation of PCASs itself to achieve the absorption circulation of treating dining lampblack by using PCASs. 展开更多
关键词 Dining lampblack CO_(2)-switchable phase change Absorption Waste recycling Solvents
下载PDF
The establishment of Boron nitride@sodium alginate foam/polyethyleneglycol composite phase change materials with high thermal conductivity, shape stability, and reusability
17
作者 Jianhui Zhou Guohao Du +3 位作者 Jianfeng Hu Xin Lai Shan Liu Zhengguo Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第2期11-21,共11页
Adopting organic phase change materials(PCMs) for the management of electronic devices is restricted by low thermal conductivity. In this paper, the composite PCMs are established by freeze-drying and vacuum impregnat... Adopting organic phase change materials(PCMs) for the management of electronic devices is restricted by low thermal conductivity. In this paper, the composite PCMs are established by freeze-drying and vacuum impregnation. Herein, polyethylene glycol(PEG) is induced as heat storage materials, boron nitride(BN) is embedded as filler stacking in an orderly fashion on the foam walls to improve thermal conductivity and sodium alginate(SA) is formed as supporting material to keep the shape of the composite stable. X-ray diffractometry, scanning electron microscopy-energy dispersive spectrometer, thermal gravimetric analysis, thermal conductivity meter, differential scanning calorimeter, and Fourier transform infrared were used to characterize the samples and thermal cycles were employed to measure the shape stability. The results exhibit the BN@SA/PEG composite PCMs have good chemical compatibility, stable morphology, and thermal stability. Due to the high porosity of foam, PEG endows the composite PCMs with high latent heat(149.11 and 141.59 J·g^(-1)). Simultaneously, BN@SA/PEG shows an excellent heat performance with high thermal conductivity(0.99 W·m^(-1)·K^(-1)), reusability, and shape stability, contributing the composite PCMs to application in the energy storage field. This study provides a strategy to manufacture flexible, long-serving, and shape-stable PCMs via introducing BN@SA foam as a storage framework, and these PCMs have great potential in thermal management in the electronic field. 展开更多
关键词 Porous structure Boron nitride Organic phase change material Thermal conductivity Energy storage
下载PDF
Wax from Pyrolysis of Waste Plastics as a Potential Source of Phase Change Material for Thermal Energy Storage
18
作者 Pin Jin Ong Zhi Xiong Jerry Heng +11 位作者 Zhenxiang Xing Hnin Yu Yu Ko Pei Wang Hongfei Liu Rong Ji Xizu Wang Beng Hoon Tan Zibiao Li Jian Wei Xu Xian Jun Loh Enyi Ye Qiang Zhu 《Transactions of Tianjin University》 EI CAS 2023年第3期225-234,共10页
Over the past half-century, plastic consumption has grown rapidly due to its versatility, low cost, and unrivaled functional properties. Among the diff erent implemented strategies for recycling waste plastics, pyroly... Over the past half-century, plastic consumption has grown rapidly due to its versatility, low cost, and unrivaled functional properties. Among the diff erent implemented strategies for recycling waste plastics, pyrolysis is deemed the most economical option. Currently, the wax obtained from the pyrolysis of waste plastics is mainly used as a feedstock to manufacture chemicals and fuels or added to asphalt for pavement construction, with no other applications of wax being reported. Herein, the thermal pyrolysis of three common waste polyolefin plastics: high-density polyethylene(HDPE), low-density polyethylene(LDPE), and polypropylene(PP), was conducted at 450 ℃. The waste plastics-derived waxes were characterized and studied for a potential new application: phase change materials(PCMs) for thermal energy storage(TES). Gas chromatography–mass spectrometry analysis showed that paraffin makes up most of the composition of HDPE and LDPE waxes, whereas PP wax contains a mixture of naphthene, isoparaffin, olefin, and paraffin. Diff erential scanning calorimetry(DSC) analysis indicated that HDPE and LDPE waxes have a peak melting temperature of 33.8 ℃ and 40.3 ℃, with a relatively high latent heat of 103.2 J/g and 88.3 J/g, respectively, whereas the PP wax was found to have almost negligible latent heat. Fourier transform infrared spectroscopy and DSC results revealed good chemical and thermal stability of HDPE and LDPE waxes after 100 cycles of thermal cycling. Performance evaluation of the waxes was also conducted using a thermal storage pad to understand their thermoregulation characteristics for TES applications. 展开更多
关键词 PYROLYSIS Waste plastics RECYCLING WAX phase change materials
下载PDF
Spatiotemporal phase change materials for thermal energy long-term storage and controllable release
19
作者 Yangeng Li Yan Kou +4 位作者 Keyan Sun Jie Chen Chengxin Deng Chaohe Fang Quan Shi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期228-236,I0006,共10页
Phase change materials(PCMs)have attracted much attention in the field of solar thermal utilization recently,due to their outstanding thermal energy storage performance.However,PCMs usually release their stored latent... Phase change materials(PCMs)have attracted much attention in the field of solar thermal utilization recently,due to their outstanding thermal energy storage performance.However,PCMs usually release their stored latent heat spontaneously as the temperature below the phase transition temperature,rendering thermal energy storage and release uncontrollable,thus hindering their practical application in time and space.Herein,we developed erythritol/sodium carboxymethylcellulose/tetrasodium ethylenediaminetetraacetate(ERY/CMC/EDTA-4Na)composite PCMs with novel spatiotemporal thermal energy storage properties,defined as spatiotemporal PCMs(STPCMs),which exhibit the capacity of thermal energy long-term storage and controllable release.Our results show that the composite PCMs are unable to lose latent heat due to spontaneous crystallization during cooling,but can controllably release thermal energy through cold crystallization during reheating.The cold-crystallization temperature and enthalpy of composite PCMs can be adjusted by proportional addition of EDTA-4Na to the composite.When the mass fractions of CMC and EDTA-4Na are both 10%,the composite PCMs can exhibit the optical coldcrystallization temperature of 51.7℃ and enthalpy of 178.1 J/g.The supercooled composite PCMs without latent heat release can be maintained at room temperature(10-25℃)for up to more than two months,and subsequently the stored latent heat can be controllably released by means of thermal triggering or heterogeneous nucleation.Our findings provide novel insights into the design and construction of new PCMs with spatiotemporal performance of thermal energy long-term storage and controllable release,and consequently open a new door for the development of advanced solar thermal utilization techniques on the basis of STPCMs. 展开更多
关键词 phase change materials Long-term thermal storage Controllable release ERYTHRITOL
下载PDF
Modified sepiolite stabilized stearic acid as a form-stable phase change material for thermal energy storage
20
作者 Chuanchang Li Xinke Peng +1 位作者 Jianjun He Jian Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第9期1835-1845,共11页
Sepiolite(ST) was used as a supporting matrix in compiste phase change materials(PCMs) due to its unique microstructure, good thermal stability, and other raw material advantages. In this paper, microwave acid treatme... Sepiolite(ST) was used as a supporting matrix in compiste phase change materials(PCMs) due to its unique microstructure, good thermal stability, and other raw material advantages. In this paper, microwave acid treatment were innovatively used for the modification of sepiolite. The modified sepiolite(ST_(m)) obtained in different hydrochloric acid concentrations(0.25, 0.5, 0.75, and 1.0 mol·L^(-1)) was added to stearic acid(SA) via vacuum impregnation method. The thermophysical properties of the composites were changed by varying the hydrochloric acid concentration. The SA-ST_(m0.5)obtained by microwave acid treatment at 0.5 mol·L^(-1)hydrochloric acid concentration showed a higher loading capacity(82.63%) than other composites according to the differential scanning calorimeter(DSC) analysis. The melting and freezing enthalpies of SA-ST_(m0.5)were of 152.30 and 148.90 J·g^(-1), respectively. The thermal conductivity of SA-ST_(m0.5)was as high as 1.52 times that of pure SA. In addition, the crystal structure, surface morphology, and microporous structure of ST_(m)were studied, and the mechanism of SAST_(m0.5)performance enhancement was further revealed by Brunauere Emmett Teller(BET) analysis. Leakage experiment showed that SAST_(m0.5)had a good morphological stability. These results demostrate that SA-ST_(m0.5)has a potential application in thermal energy storage. 展开更多
关键词 SEPIOLITE stearic acid phase change materials thermal energy storage
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部