Phosphorus is the potential anode material for emerging potassium-ion batteries(PIBs)owing to the highest specific capacity and relatively low operation plateau.However,the reversible delivered capacities of phosphoru...Phosphorus is the potential anode material for emerging potassium-ion batteries(PIBs)owing to the highest specific capacity and relatively low operation plateau.However,the reversible delivered capacities of phosphorus-based anodes,in reality,are far from the theoretical capacity corresponding to the formation of K3P alloy.And,their underlying potassium storage mechanisms remain poorly understood.To address this issue,for the first time,we perform high-resolution solid-state31P NMR combined with XRD measurements,and density functional theory calculations to yield a systemic quantitative understanding of(de)potassiation reaction mechanism of phosphorus anode.We explicitly reveal a previously unknown asymmetrical nanocrystalline-to-amorphous transition process via rP←→(K_(3)P_(11),K_(3)P_(7),beta-K_(4)P_(6))←→(alpha-K4P6)←→(K_(1-x)P,KP,K_(4-x)P3,K_(1+x)P)←→(amorphous K4P3,amorphous K3P)that are proceed along with the electrochemical potassiation/depotassiation processes.Additionally,the corresponding KP alloys intermediates,such as the amorphous phases of K_(4)P_(3),K_(3)P,and the nonstoichiometric phases of“K_(1-x)P”,“K_(1+x)P”,“K_(4-x)P_(3)”are experimentally detected,which indicating various complicated K-P alloy species are coexisted and evolved with the sluggish electrochemical reaction kinetics,resulting in lower capacity of phosphorus-based anodes.Our findings offer some insights into the specific multi-phase evolution mechanism of alloying anodes that may be generally involved in conversion-type electrode materials for PIBs.展开更多
Aqueous battery-supercapacitor hybrid devices(BSHs)are of great importance to enrich electrochemical energy storage systems with both high energy and power densities.However,further improvement of BSHs in aqueous elec...Aqueous battery-supercapacitor hybrid devices(BSHs)are of great importance to enrich electrochemical energy storage systems with both high energy and power densities.However,further improvement of BSHs in aqueous electrolytes is greatly hampered by operating voltage and capacity limits.Different from the conventional intercalation/de-intercalation mechanism,Bi_(2)O_(3) implements charge storage by a reversible phase conversion mechanism.Herein,taking Bi_(2)O_(3) electrode with wide potential window(from-1.2 to 1 V vs.saturated calomel electrode)and high capacity as battery-type anode,we propose that the overall performance of aqueous BSHs can be greatly upgraded under neutral condition.By paring with stable layer-structuredδ-MnO_(2) cathode,a sodium-ion Bi_(2)O_(3)//MnO_(2) BSH with an ultrahigh voltage of 2.4 V in neutral sodium sulfate electrolyte is developed for the first time.This hybrid device exhibits high capacity(~215 C g^(-1) at 1 mA cm^(-2)),relatively long lifespan(~77.2%capacity retention after 1500 cycles),remarkable energy density(71.7 Wh kg^(-1)@400.5 W kg^(-1))and power density(3204.3 W kg^(-1)@18.8 Wh kg^(-1)).Electrochemical measurements combining a set of spectroscopic techniques reveal the reversible phase conversion between bismuth oxide and metallic bismuth(Bi_(2)O_(3)?Bi0)through Bi^(2+) transition phase in neutral sodium sulfate solution,which can deliver multielectron transfer up to 6,leading to the high-energy BSHs.Our work sheds light on the feasibility of using Bi_(2)O_(3) electrode under neutral condition to address the issue of narrow voltage and low capacity for aqueous BSHs.展开更多
We report a facile phase conversion method that can locally convert n-type SnSe_(2)into p-type SnSe by direct laser irradiation.Raman spectra of SnSe_(2)flakes before and after laser irradiation confirm the phase conv...We report a facile phase conversion method that can locally convert n-type SnSe_(2)into p-type SnSe by direct laser irradiation.Raman spectra of SnSe_(2)flakes before and after laser irradiation confirm the phase conversion of SnSe_(2)to SnSe.By performing the laser irradiation on SnSe_(2)flakes at different temperatures,it is found that laser heating effect induces the removal of Se atoms from SnSe_(2)and results in the phase conversion of SnSe_(2)to SnSe.Lattice-revolved transmission electron microscope images of SnSe_(2)flakes before and after laser irradiation further confirm such conversion.By selective laser irradiation on SnSe_(2)flakes,a pattern with SnSe_(2)/SnSe heteostructures is created.This indicates that the laser induced phase conversion technique has relatively high spatial resolution and enables the creation of micron-sized in-plane p-n junction at predefined region.展开更多
The application of polymers to replace oleylamine(OLA)and oleic acid(OA)as ligands for perovskite nanocrystals is an effective strategy to improve their stability and durability especially for the solution-based proce...The application of polymers to replace oleylamine(OLA)and oleic acid(OA)as ligands for perovskite nanocrystals is an effective strategy to improve their stability and durability especially for the solution-based processing.Herein,we report a mechanosynthesis of lead bromide perovskite nanoparticles(NPs)stabilized by partially hydrolyzed poly(methyl methacrylate)(h-PMMA)and highmolecular-weight highly-branched poly(ethylenimine)(PEI-25K).The as-synthesized NP solutions exhibited green emission centered at 516 nm,possessing a narrow full-width at half-maximum of 17 nm and as high photoluminescence quantum yield(PL QY)as 85%,while showing excellent durability and resistance to polar solvents,e.g.,methanol.The colloids of polymer-stabilized NPs were directly processable toform stable and strongly-emitting thin films and solids,making them attractive as gain media.Furthermore,the roles of h-PMMA and PEI-25K in the grinding process were studied in depth.The h-PMMA can form micelles in the grinding solvent of dichloromethane to act as size-regulating templates for the growth of NPs.The PEI-25K with large amounts of amino groups induced significant enrichment of PbBr_(2)in the reaction mixture,which in turn caused the formation of CsPb_(2)Br_(5)-mPbBr_(2)and CsPbBr_(3)-Cs_(4)PbBr_(6)-nCsBr NPs.The presence of CsPbBr_(3)-Cs_(4)PbBr_(6)-nCsBr NPs was responsible for the high PL QY,as the Cs_(4)PbBr_(6)phase with a wide energy bandgap can passivate the surface defects of the CsPbBr_(3)phase.This work describes a direct and facile mechanosynthesis of polymer-coordinated perovskite NPs and promotes in-depth understanding of the formation and phase conversion for perovskite NPs in the grinding process.展开更多
Long lasting strontium aluminate phosphors were synthesized by means of coated precipitation in the experiment. SrAl 2O 4 monoclinic phase with long afterglow was synthesized at 1 100 ℃ with the aid of H 3BO 3, and t...Long lasting strontium aluminate phosphors were synthesized by means of coated precipitation in the experiment. SrAl 2O 4 monoclinic phase with long afterglow was synthesized at 1 100 ℃ with the aid of H 3BO 3, and the synthetic temperature decreased about 100 ℃—150 ℃ than in solid state reaction. The process of heat treatment was studied by TG-DTA. The phase compositions of powders were analyzed by XRD. The micrographs of the samples were investigated by SEM and the luminescent properties were researched by optical spectrum. The effects of H 3BO 3 on the phase composition and microstructure of the calcined powders were investigated. The results indicated that H 3BO 3 accelerated the formation of SrAl 2O 4 by consuming the intermediate phase. The addition of Dy 2O 3 stimulated the afterglow property due to the increase in the depth of the trap center in the materials.展开更多
As an alternative reductant for fossil fuel in the future,straw-type biomass contributes to emission reduction and green utilization in the suspension roasting process.In this study,the influences of the roasting time...As an alternative reductant for fossil fuel in the future,straw-type biomass contributes to emission reduction and green utilization in the suspension roasting process.In this study,the influences of the roasting time,roasting temperature and dose of straw-type biomass after suspension magnetization roasting(SMR) and separation were investigated.The optimal conditions were determined to be a roasting time of 7.5 min with a straw-type biomass dose of 20 wt% and a roasting temperature of 800℃ in which an iron grade of 71.07% and recovery of 94.17% were obtained for the iron concentrate.The maximum saturation magnetization under optimal conditions was 35.05 A·m^(2)·g^(-1),and the gaseous regulation of the biomass revealed that cumulative reducing gas volume was 293.93 mL at the optimal roasting time of450 s.The transformation of hematite to magnetite was detected by X-ray diffraction(XRD).During microstructure evolution,the outer layer consisting of fissures and tiny holes continuously deepened toward the core.展开更多
By using the ground,high-altitude conventional observation data and NCEP global reanalysis data,the circulation background and the snowfall causes of light rain changing to snowstorm weather process in Panjin during F...By using the ground,high-altitude conventional observation data and NCEP global reanalysis data,the circulation background and the snowfall causes of light rain changing to snowstorm weather process in Panjin during February 12-13 in 2009 were analyzed in detail.Focusing on the rain and snow phase state conversion time,the effects of precipitation phase state transformation time on this precipitation forecast were discussed.The results showed that the circulation adjustment,the eastward shift and down south of polar vortex and the frequent activity of cold air were the main factors which caused the precipitation was obviously more in February in Panjin.The direct reasons which caused the strong snowfall in Panjin were that the warm and cold air evenly matched for a long time,and the southwest jet provided the sufficient water vapor condition.展开更多
Porous materials such as metal-organic frameworks(MOFs)with high theoretical volumetric gas uptake capacity are promising materials for gas storage and separation,but the structuring for practical applications is chal...Porous materials such as metal-organic frameworks(MOFs)with high theoretical volumetric gas uptake capacity are promising materials for gas storage and separation,but the structuring for practical applications is challenging.Herein,we report a general and feasible strategy to combine electrospinning with a phase conversion method to decorate polyacrylonitrile nanofibers(PAN NFs)with CuMOF(HKUST-1).The strategy is based on the combination of surface pretreatment of the NFs with Cu(OH)_(2) and a subsequent phase conversion into HKUST-1 crystals(PCHKUST-1).A significant higher loading of HKUST-1 in the PAN NF matrix was achieved by the phase conversion method compared with direct electrospinning of MOF slurries or insitu growth of MOF crystals on NFs.As a result,the hierarchical structured PC(phase conversion)-HKUST-1 NFs revealed the highest gravimetric storage capacity of 86 cm^(3) g^(-1)(STP)at 3500 kPa and 298 K for methane(CH_(4)),which is higher than other HKUST-1 NFs reported previously.The improved CH_(4) uptake can be explained by the high loading of HKUST-1 due to the high availability of Cu-ions localized on the surface of the NFs during the phase conversion process,resulting in high surface area and excellent gas access of the phase converted HKUST-1.Thus,the developed strategy of structuring MOFs could be of interest for the fabrication of tailor-made MOF NF architectures for other energy and environmental applications.展开更多
To increase the service life of rechargeable batteries,transition metal oxide hosts with high structural stability for the intercalation of carrier ions are important.Herein,we reconstruct the crystal structure of a c...To increase the service life of rechargeable batteries,transition metal oxide hosts with high structural stability for the intercalation of carrier ions are important.Herein,we reconstruct the crystal structure of a commercial V_(2)O_(5)by pre-intercalating H^(+)and H_(2)O pillars using a facile hydrothermal reaction and obtain a bi-layer structured H_(0.642)V_(2)O_(5)·0.143H_(2)O(HVO)as an excellent host for aqueous Zn-ion batteries.Benefiting from the structural reconstruction,the irreversible“layer-to-amorphous”phase evolution during cycling is considerably less,resulting in ultra-high cycling stability of HVO with nearly no capacity fading even after 500 cycles at a current density of 0.5Ag^(-1).Moreover,a synthetic proton and Zn^(2+)intercalation mechanism in the HVO host is demonstrated.This work provides both a facile synthesis method for the preparation of V-based compounds and a new viewpoint for achieving high-performance host materials.展开更多
基金financially supported by National Nature Science Foundation of China(Grant No.22272175,21805278,52072323,52122211)the Fujian Science and Technology Planning Projects of China(2020T3022,2022T3067)+3 种基金the National Key R&D Program of China(No.2021YFB3500400)the Future-prospective and Stride-across Programs of Haixi Institutes,Chinese Academy of Sciences(No.CXZX-2022-GH02)the Youth Innovation Foundation of Xiamen City(Grant No.3502Z20206083)the Opening Project of PCOSS,Xiamen University(Grant No.202014)。
文摘Phosphorus is the potential anode material for emerging potassium-ion batteries(PIBs)owing to the highest specific capacity and relatively low operation plateau.However,the reversible delivered capacities of phosphorus-based anodes,in reality,are far from the theoretical capacity corresponding to the formation of K3P alloy.And,their underlying potassium storage mechanisms remain poorly understood.To address this issue,for the first time,we perform high-resolution solid-state31P NMR combined with XRD measurements,and density functional theory calculations to yield a systemic quantitative understanding of(de)potassiation reaction mechanism of phosphorus anode.We explicitly reveal a previously unknown asymmetrical nanocrystalline-to-amorphous transition process via rP←→(K_(3)P_(11),K_(3)P_(7),beta-K_(4)P_(6))←→(alpha-K4P6)←→(K_(1-x)P,KP,K_(4-x)P3,K_(1+x)P)←→(amorphous K4P3,amorphous K3P)that are proceed along with the electrochemical potassiation/depotassiation processes.Additionally,the corresponding KP alloys intermediates,such as the amorphous phases of K_(4)P_(3),K_(3)P,and the nonstoichiometric phases of“K_(1-x)P”,“K_(1+x)P”,“K_(4-x)P_(3)”are experimentally detected,which indicating various complicated K-P alloy species are coexisted and evolved with the sluggish electrochemical reaction kinetics,resulting in lower capacity of phosphorus-based anodes.Our findings offer some insights into the specific multi-phase evolution mechanism of alloying anodes that may be generally involved in conversion-type electrode materials for PIBs.
基金supported by the National Natural Science Foundation of China (21872105, 22072107)the Science & Technology Commission of Shanghai Municipality (19DZ2271500)。
文摘Aqueous battery-supercapacitor hybrid devices(BSHs)are of great importance to enrich electrochemical energy storage systems with both high energy and power densities.However,further improvement of BSHs in aqueous electrolytes is greatly hampered by operating voltage and capacity limits.Different from the conventional intercalation/de-intercalation mechanism,Bi_(2)O_(3) implements charge storage by a reversible phase conversion mechanism.Herein,taking Bi_(2)O_(3) electrode with wide potential window(from-1.2 to 1 V vs.saturated calomel electrode)and high capacity as battery-type anode,we propose that the overall performance of aqueous BSHs can be greatly upgraded under neutral condition.By paring with stable layer-structuredδ-MnO_(2) cathode,a sodium-ion Bi_(2)O_(3)//MnO_(2) BSH with an ultrahigh voltage of 2.4 V in neutral sodium sulfate electrolyte is developed for the first time.This hybrid device exhibits high capacity(~215 C g^(-1) at 1 mA cm^(-2)),relatively long lifespan(~77.2%capacity retention after 1500 cycles),remarkable energy density(71.7 Wh kg^(-1)@400.5 W kg^(-1))and power density(3204.3 W kg^(-1)@18.8 Wh kg^(-1)).Electrochemical measurements combining a set of spectroscopic techniques reveal the reversible phase conversion between bismuth oxide and metallic bismuth(Bi_(2)O_(3)?Bi0)through Bi^(2+) transition phase in neutral sodium sulfate solution,which can deliver multielectron transfer up to 6,leading to the high-energy BSHs.Our work sheds light on the feasibility of using Bi_(2)O_(3) electrode under neutral condition to address the issue of narrow voltage and low capacity for aqueous BSHs.
基金supported by the National Key Research&Development Project of China(Grant Nos.2016YFA0202300 and 2018FYA0305800)the National Natural Science Foundation of China(Grant No.61888102)+1 种基金Strategic Priority Research Program of Chinese Academy of Sciences(Grant Nos.XDB30000000 and XDB28000000)Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.Y201902)。
文摘We report a facile phase conversion method that can locally convert n-type SnSe_(2)into p-type SnSe by direct laser irradiation.Raman spectra of SnSe_(2)flakes before and after laser irradiation confirm the phase conversion of SnSe_(2)to SnSe.By performing the laser irradiation on SnSe_(2)flakes at different temperatures,it is found that laser heating effect induces the removal of Se atoms from SnSe_(2)and results in the phase conversion of SnSe_(2)to SnSe.Lattice-revolved transmission electron microscope images of SnSe_(2)flakes before and after laser irradiation further confirm such conversion.By selective laser irradiation on SnSe_(2)flakes,a pattern with SnSe_(2)/SnSe heteostructures is created.This indicates that the laser induced phase conversion technique has relatively high spatial resolution and enables the creation of micron-sized in-plane p-n junction at predefined region.
基金G.J.acknow ledges the China Scholarship Council(No.201706740088).This work was partly supported by the bilateral IB-BMBF-TOBITAK Project ColMiBack(01DL20002)and DFG project EY 16/14-3.O.E.acknowledges TOBITAK for the financial support through BIDEB-2211 program.H.V.D.gratefully acknowledges support from TUBA.The use of the HZDR Ion Beam Center TEM facilities and the funding of TEM Talos by the German Federal Ministry of Education of Research(BMBF),Grant No.03SF0451,in the framework o f HEMCP are acknowledged.M.G.acknowledges the Swiss National Science Foundation(SNF)and the German Research Foundation(DFG EY 16/18-2)for financial support.W.W.received supports from Jiangsu Overseas Visiting Scholar Program for University Prom inent Young&Middle-aged Teachers and Presidents.X.F.acknowledges the China Scholarship Council(No.201606340161).J.W.received supports from the National Natural Science Foundation of China(No.21701143).We are very grateful to Prof.A lexander Eychmuller,Dr.Vladim ir Lesnyak and Dr.Alexey Shavel for the valuable discussions.We are grateful to Susanne Goldberg for TEM imaging,Franziska Eichler for the instruction to the PL decay measurements.We appreciate Linlin Wang and Dr.Juliane Simmchen for their help with DLS measurements.We thank Dr.Andre Wolf for his corrections to the draft.
文摘The application of polymers to replace oleylamine(OLA)and oleic acid(OA)as ligands for perovskite nanocrystals is an effective strategy to improve their stability and durability especially for the solution-based processing.Herein,we report a mechanosynthesis of lead bromide perovskite nanoparticles(NPs)stabilized by partially hydrolyzed poly(methyl methacrylate)(h-PMMA)and highmolecular-weight highly-branched poly(ethylenimine)(PEI-25K).The as-synthesized NP solutions exhibited green emission centered at 516 nm,possessing a narrow full-width at half-maximum of 17 nm and as high photoluminescence quantum yield(PL QY)as 85%,while showing excellent durability and resistance to polar solvents,e.g.,methanol.The colloids of polymer-stabilized NPs were directly processable toform stable and strongly-emitting thin films and solids,making them attractive as gain media.Furthermore,the roles of h-PMMA and PEI-25K in the grinding process were studied in depth.The h-PMMA can form micelles in the grinding solvent of dichloromethane to act as size-regulating templates for the growth of NPs.The PEI-25K with large amounts of amino groups induced significant enrichment of PbBr_(2)in the reaction mixture,which in turn caused the formation of CsPb_(2)Br_(5)-mPbBr_(2)and CsPbBr_(3)-Cs_(4)PbBr_(6)-nCsBr NPs.The presence of CsPbBr_(3)-Cs_(4)PbBr_(6)-nCsBr NPs was responsible for the high PL QY,as the Cs_(4)PbBr_(6)phase with a wide energy bandgap can passivate the surface defects of the CsPbBr_(3)phase.This work describes a direct and facile mechanosynthesis of polymer-coordinated perovskite NPs and promotes in-depth understanding of the formation and phase conversion for perovskite NPs in the grinding process.
文摘Long lasting strontium aluminate phosphors were synthesized by means of coated precipitation in the experiment. SrAl 2O 4 monoclinic phase with long afterglow was synthesized at 1 100 ℃ with the aid of H 3BO 3, and the synthetic temperature decreased about 100 ℃—150 ℃ than in solid state reaction. The process of heat treatment was studied by TG-DTA. The phase compositions of powders were analyzed by XRD. The micrographs of the samples were investigated by SEM and the luminescent properties were researched by optical spectrum. The effects of H 3BO 3 on the phase composition and microstructure of the calcined powders were investigated. The results indicated that H 3BO 3 accelerated the formation of SrAl 2O 4 by consuming the intermediate phase. The addition of Dy 2O 3 stimulated the afterglow property due to the increase in the depth of the trap center in the materials.
基金the financial support provided to this work by the National Natural Science Foundation of China (No. 52022019)。
文摘As an alternative reductant for fossil fuel in the future,straw-type biomass contributes to emission reduction and green utilization in the suspension roasting process.In this study,the influences of the roasting time,roasting temperature and dose of straw-type biomass after suspension magnetization roasting(SMR) and separation were investigated.The optimal conditions were determined to be a roasting time of 7.5 min with a straw-type biomass dose of 20 wt% and a roasting temperature of 800℃ in which an iron grade of 71.07% and recovery of 94.17% were obtained for the iron concentrate.The maximum saturation magnetization under optimal conditions was 35.05 A·m^(2)·g^(-1),and the gaseous regulation of the biomass revealed that cumulative reducing gas volume was 293.93 mL at the optimal roasting time of450 s.The transformation of hematite to magnetite was detected by X-ray diffraction(XRD).During microstructure evolution,the outer layer consisting of fissures and tiny holes continuously deepened toward the core.
文摘By using the ground,high-altitude conventional observation data and NCEP global reanalysis data,the circulation background and the snowfall causes of light rain changing to snowstorm weather process in Panjin during February 12-13 in 2009 were analyzed in detail.Focusing on the rain and snow phase state conversion time,the effects of precipitation phase state transformation time on this precipitation forecast were discussed.The results showed that the circulation adjustment,the eastward shift and down south of polar vortex and the frequent activity of cold air were the main factors which caused the precipitation was obviously more in February in Panjin.The direct reasons which caused the strong snowfall in Panjin were that the warm and cold air evenly matched for a long time,and the southwest jet provided the sufficient water vapor condition.
基金supported by the Grande Solution Project“HiGradeGas”(48279)Innovation Fund Denmark,exploring NFs-based adsorbents for biogas upgrading and storage+1 种基金the Danish Research Council to provide funding to support fundamental research on electrospinning(8022-00237B)for investigating NFs structures for enzyme immobilization(6111-00232B)。
文摘Porous materials such as metal-organic frameworks(MOFs)with high theoretical volumetric gas uptake capacity are promising materials for gas storage and separation,but the structuring for practical applications is challenging.Herein,we report a general and feasible strategy to combine electrospinning with a phase conversion method to decorate polyacrylonitrile nanofibers(PAN NFs)with CuMOF(HKUST-1).The strategy is based on the combination of surface pretreatment of the NFs with Cu(OH)_(2) and a subsequent phase conversion into HKUST-1 crystals(PCHKUST-1).A significant higher loading of HKUST-1 in the PAN NF matrix was achieved by the phase conversion method compared with direct electrospinning of MOF slurries or insitu growth of MOF crystals on NFs.As a result,the hierarchical structured PC(phase conversion)-HKUST-1 NFs revealed the highest gravimetric storage capacity of 86 cm^(3) g^(-1)(STP)at 3500 kPa and 298 K for methane(CH_(4)),which is higher than other HKUST-1 NFs reported previously.The improved CH_(4) uptake can be explained by the high loading of HKUST-1 due to the high availability of Cu-ions localized on the surface of the NFs during the phase conversion process,resulting in high surface area and excellent gas access of the phase converted HKUST-1.Thus,the developed strategy of structuring MOFs could be of interest for the fabrication of tailor-made MOF NF architectures for other energy and environmental applications.
基金supported by the Basic and Applied Basic Research Foundation of Guangdong Province(2019A1515110094).
文摘To increase the service life of rechargeable batteries,transition metal oxide hosts with high structural stability for the intercalation of carrier ions are important.Herein,we reconstruct the crystal structure of a commercial V_(2)O_(5)by pre-intercalating H^(+)and H_(2)O pillars using a facile hydrothermal reaction and obtain a bi-layer structured H_(0.642)V_(2)O_(5)·0.143H_(2)O(HVO)as an excellent host for aqueous Zn-ion batteries.Benefiting from the structural reconstruction,the irreversible“layer-to-amorphous”phase evolution during cycling is considerably less,resulting in ultra-high cycling stability of HVO with nearly no capacity fading even after 500 cycles at a current density of 0.5Ag^(-1).Moreover,a synthetic proton and Zn^(2+)intercalation mechanism in the HVO host is demonstrated.This work provides both a facile synthesis method for the preparation of V-based compounds and a new viewpoint for achieving high-performance host materials.