Using experimental data from a number of pulsed disc and doughnut solvent extraction columns, a unified correla- tion for the prediction of dispersed phase holdup that considers the effects of mass transfer is present...Using experimental data from a number of pulsed disc and doughnut solvent extraction columns, a unified correla- tion for the prediction of dispersed phase holdup that considers the effects of mass transfer is presented. Pulsed disc and doughnut solvent extraction columns (PDDC) have been used for a range of important applications such as ura- nium extraction and nuclear fuel recycling. Although the dispersed phase holdup in a PDDC has been presented by some researchers, there is still the need to develop a robust correlation that can predict the experimental dispersed phase holdup over a range of operating conditions including the effects of mass transfer direction. In this study, dis- persed phase holdup data from different literature sources for a PDDC were used to refit constants for the correlation presented by Kumar and Hartland lind. Eng. Chem. Res.,27 (1988),131-138] which did not consider the effect of col- umn geometry. In order to incorporate the characteristic length of the PDDC (i.e. the plate spacing), the unified cor- relation for holdup proposed by Kumar and Hartland based on data from eight different types of columns [Ind. Eng. Chem. Res.,34 (1995) 3925-3940] was refitted to the PDDC data. New constants have been presented for each hold- up correlation for a PDDC based on regression analysis using published holdup data from PDDCs that cover a range of onerating conditions and nhwical nronerties and consider the direction of mass transfer.展开更多
Five different internals were designed,and their effects on phase holdup and backmixing were investigated in a gas–liquid concurrent upflow reactor where the spherical alumina packing particles of three diameters(3.0...Five different internals were designed,and their effects on phase holdup and backmixing were investigated in a gas–liquid concurrent upflow reactor where the spherical alumina packing particles of three diameters(3.0,4.5 and6.0 mm)were slightly expanded under the conditions of varied superficial gas velocities(6.77×10-2-3.61×10-1 m·s-1)and superficial liquid velocities(9.47×10-4-2.17×10-3 m·s-1).The experimental results show that the gas holdup increases with the superficial gas velocity and particle size,opposite to the variational trend of liquid holdup.When an internal component is installed amid the upflow reactor,a higher gas holdup,a less liquid holdup and a larger Peclet number characterizing the weaker backmixing are obtained compared to those in the bed without internals under the same operating conditions.Additionally,the minimal backmixing is observed in the reactor equipped with the internals with a novel multi-step design.Finally,empirical correlations were proposed for estimating gas holdup,liquid holdup and Peclet number with the relative deviations within 11%,12%and 25%,respectively.展开更多
Axial and radial profiles of gas and solids holdups have been studied in agas-liquid-solid circulating fluidized bed at 140mm i.d..Experimental results indicate that the axialand radial profiles of gas and solids hold...Axial and radial profiles of gas and solids holdups have been studied in agas-liquid-solid circulating fluidized bed at 140mm i.d..Experimental results indicate that the axialand radial profiles of gas and solids holdups are more uniform than those in a conventionalfluidized bed.Axial and radial liquid dispersion coefficients in the gas-liquid-solid circulating fluidizedbed are investigated for the first time.It is found that axial and radial liquid dispersioncoefficients increases with increaes in gas velocity and solids holdup.The liquid velocity has littleinfluence on the axial liquid dispersion coefficient,but would adversely affect the redial liquiddispersion coefficient.It can be concluded that the gas-liquid-solid circulating fluidized bed hasadvantages such as better interphase contact and lower liquid dispersion along the axial directionover the expanded bed.展开更多
A pilot-scale experimental setup was constructed to investigate the effect of mild agitation on the bubble characteristics and phase holdup in a slurry bubble column.Mild agitation positively impacts the axial uniform...A pilot-scale experimental setup was constructed to investigate the effect of mild agitation on the bubble characteristics and phase holdup in a slurry bubble column.Mild agitation positively impacts the axial uniform distribution of solid holdup,though it shows insignificant influence on the radial distribution.In homogenous regime,mild agitation promotes the coalescence of bubbles,and the effect becomes stronger with increasing agitator speed.The mild agitation contributes to a decrease in bubble size in heterogeneous flow regime.Mild agitation presents a significant effect on the gas holdup by adjusting the bubble size and bubble motion trajectory.The modification was introduced to predict the gas holdup considering the effects of mild agitation,a necessary consideration for applications requiring mild agitation.This adapted model predicts gas holdup with a maximum error of 12.9%.展开更多
Most multiphase flow separation detection methods used commonly in oilfields are low in efficiency and accuracy,and have data delay.An online multiphase flow detection method is proposed based on magnetic resonance te...Most multiphase flow separation detection methods used commonly in oilfields are low in efficiency and accuracy,and have data delay.An online multiphase flow detection method is proposed based on magnetic resonance technology,and its supporting device has been made and tested in lab and field.The detection technology works in two parts:measure phase holdup in static state and measure flow rate in flowing state.Oil-water ratio is first measured and then gas holdup.The device is composed of a segmented magnet structure and a dual antenna structure for measuring flowing fluid.A highly compact magnetic resonance spectrometer system and intelligent software are developed.Lab experiments and field application show that the online detection system has the following merits:it can measure flow rate and phase holdup only based on magnetic resonance technology;it can detect in-place transient fluid production at high frequency and thus monitor transient fluid production in real time;it can detect oil,gas and water in a full range at high precision,the detection isn’t affected by salinity and emulsification.It is a green,safe and energy-saving system.展开更多
文摘Using experimental data from a number of pulsed disc and doughnut solvent extraction columns, a unified correla- tion for the prediction of dispersed phase holdup that considers the effects of mass transfer is presented. Pulsed disc and doughnut solvent extraction columns (PDDC) have been used for a range of important applications such as ura- nium extraction and nuclear fuel recycling. Although the dispersed phase holdup in a PDDC has been presented by some researchers, there is still the need to develop a robust correlation that can predict the experimental dispersed phase holdup over a range of operating conditions including the effects of mass transfer direction. In this study, dis- persed phase holdup data from different literature sources for a PDDC were used to refit constants for the correlation presented by Kumar and Hartland lind. Eng. Chem. Res.,27 (1988),131-138] which did not consider the effect of col- umn geometry. In order to incorporate the characteristic length of the PDDC (i.e. the plate spacing), the unified cor- relation for holdup proposed by Kumar and Hartland based on data from eight different types of columns [Ind. Eng. Chem. Res.,34 (1995) 3925-3940] was refitted to the PDDC data. New constants have been presented for each hold- up correlation for a PDDC based on regression analysis using published holdup data from PDDCs that cover a range of onerating conditions and nhwical nronerties and consider the direction of mass transfer.
基金Supported by the National Key Research and Development Program(2016YFB0301701)the National Natural Science Foundation of China(21776283,21427814)+1 种基金Key Research Program of Frontier Sciences of CAS(QYZDJ-SSW-JSC030)the Instrument Developing Project of Chinese Academy of Sciences(YZ201641)and Petro China.
文摘Five different internals were designed,and their effects on phase holdup and backmixing were investigated in a gas–liquid concurrent upflow reactor where the spherical alumina packing particles of three diameters(3.0,4.5 and6.0 mm)were slightly expanded under the conditions of varied superficial gas velocities(6.77×10-2-3.61×10-1 m·s-1)and superficial liquid velocities(9.47×10-4-2.17×10-3 m·s-1).The experimental results show that the gas holdup increases with the superficial gas velocity and particle size,opposite to the variational trend of liquid holdup.When an internal component is installed amid the upflow reactor,a higher gas holdup,a less liquid holdup and a larger Peclet number characterizing the weaker backmixing are obtained compared to those in the bed without internals under the same operating conditions.Additionally,the minimal backmixing is observed in the reactor equipped with the internals with a novel multi-step design.Finally,empirical correlations were proposed for estimating gas holdup,liquid holdup and Peclet number with the relative deviations within 11%,12%and 25%,respectively.
文摘Axial and radial profiles of gas and solids holdups have been studied in agas-liquid-solid circulating fluidized bed at 140mm i.d..Experimental results indicate that the axialand radial profiles of gas and solids holdups are more uniform than those in a conventionalfluidized bed.Axial and radial liquid dispersion coefficients in the gas-liquid-solid circulating fluidizedbed are investigated for the first time.It is found that axial and radial liquid dispersioncoefficients increases with increaes in gas velocity and solids holdup.The liquid velocity has littleinfluence on the axial liquid dispersion coefficient,but would adversely affect the redial liquiddispersion coefficient.It can be concluded that the gas-liquid-solid circulating fluidized bed hasadvantages such as better interphase contact and lower liquid dispersion along the axial directionover the expanded bed.
基金supported by National Natural Science Foundation of China(grant Nos.22308171,21968023)State Key Laboratory of Heavy Oil Processing,China University of Petroleum(grant No.WX20230157)Special Projects of the Central Government Guiding Local Science and Technology Development(grant No.2022FRD05017).
文摘A pilot-scale experimental setup was constructed to investigate the effect of mild agitation on the bubble characteristics and phase holdup in a slurry bubble column.Mild agitation positively impacts the axial uniform distribution of solid holdup,though it shows insignificant influence on the radial distribution.In homogenous regime,mild agitation promotes the coalescence of bubbles,and the effect becomes stronger with increasing agitator speed.The mild agitation contributes to a decrease in bubble size in heterogeneous flow regime.Mild agitation presents a significant effect on the gas holdup by adjusting the bubble size and bubble motion trajectory.The modification was introduced to predict the gas holdup considering the effects of mild agitation,a necessary consideration for applications requiring mild agitation.This adapted model predicts gas holdup with a maximum error of 12.9%.
基金Supported by the National Natural Science Foundation of China(51704327)
文摘Most multiphase flow separation detection methods used commonly in oilfields are low in efficiency and accuracy,and have data delay.An online multiphase flow detection method is proposed based on magnetic resonance technology,and its supporting device has been made and tested in lab and field.The detection technology works in two parts:measure phase holdup in static state and measure flow rate in flowing state.Oil-water ratio is first measured and then gas holdup.The device is composed of a segmented magnet structure and a dual antenna structure for measuring flowing fluid.A highly compact magnetic resonance spectrometer system and intelligent software are developed.Lab experiments and field application show that the online detection system has the following merits:it can measure flow rate and phase holdup only based on magnetic resonance technology;it can detect in-place transient fluid production at high frequency and thus monitor transient fluid production in real time;it can detect oil,gas and water in a full range at high precision,the detection isn’t affected by salinity and emulsification.It is a green,safe and energy-saving system.