Modulation recognition becomes unreliable at low signal-to-noise ratio(SNR)over fading channel.A novel method is proposed to recognize the digital modulated signals with frequency and phase offsets over multi-path fad...Modulation recognition becomes unreliable at low signal-to-noise ratio(SNR)over fading channel.A novel method is proposed to recognize the digital modulated signals with frequency and phase offsets over multi-path fading channels in this paper.This method can overcome the effects of phase offset,Gaussian noise and multi-path fading.To achieve this,firstly,the characteristic parameters search is constructed based on the cyclostationarity of received signals,to overcome the phase offset,Gaussian white noise,and influence caused by multi-path fading.Then,the carrier frequency of the received signal is estimated,and the maximum characteristic parameter is searched around the integer multiple carriers and their vicinities.Finally,the modulation types of the received signal with frequency and phase offsets are classified using decision thresholds.Simulation results demonstrate that the performance of the proposed method is better than the traditional methods when SNR is over 5dB,and that the proposed method is robust to frequency and phase offsets over multipath channels.展开更多
Spectral efficiency and energy efficiency are two important performance indicators of satellite systems. The Quasi-Constant Envelope Orthogonal Frequency Division Multiplexing(QCE-OFDM) technique can achieve both high...Spectral efficiency and energy efficiency are two important performance indicators of satellite systems. The Quasi-Constant Envelope Orthogonal Frequency Division Multiplexing(QCE-OFDM) technique can achieve both high spectral efficiency and low peak-to-average power ratio(PAPR). Therefore, the QCE-OFDM technique is considered as a promising candidate multi-carrier technique for satellite systems. However, the Doppler effect will cause the carrier frequency offset(CFO), and the non-ideal oscillator will cause the carrier phase offset(CPO) in satellite systems. The CFO and CPO will further result in the bit-error-rate(BER) performance degradation. Hence, it is important to estimate and compensate the CFO and CPO. This paper analyzes the effects of both CFO and CPO in QCE-OFDM satellite systems. Furthermore, we propose a joint CFO and CPO estimation method based on the pilot symbols in the frequency domain. In addition, the optimal pilot symbol structure with different pilot overheads is designed according to the minimum Cramer-Rao bound(CRB) criterion. Simulation results show that the estimation accuracy of the proposed method is close to the CRB.展开更多
An adaptive algorithm named low complexity phase off- set estimation (LC-POE) is proposed for orthogonal frequency division multiplexing (OFDM) signals. Depending on the requirement, the estimation procedure is di...An adaptive algorithm named low complexity phase off- set estimation (LC-POE) is proposed for orthogonal frequency division multiplexing (OFDM) signals. Depending on the requirement, the estimation procedure is divided into several scales to accelerate the adaptive convergence speed and ensure the estimation accuracy. The true phase offset is estimated through shrinking the detection range and raising the resolution scale step by step. Both the convergence performance and complexity are discussed in the paper. Simulation results show the effectiveness of the proposed algorithm. The LC-POE algorithm is promising in the application of OFDM systems.展开更多
Static phase offset (SPO) in conventional multiplying delay-locked loops (MDLLs) dramatically degrades the deterministic jitter performance. To overcome the issue, this paper presents a new SPO reduction technique for...Static phase offset (SPO) in conventional multiplying delay-locked loops (MDLLs) dramatically degrades the deterministic jitter performance. To overcome the issue, this paper presents a new SPO reduction technique for MDLLs. The technique is based on the observation that the SPO of MDLL is mainly caused by the non-idealities on charge pump (e.g. sink and source current mismatch), and control line (e.g. gate leakage of loop filter and voltage controlled delay line (VCDL) control circuit). With a high gain stage inserting between phase detector/phase frequency detector (PD/PFD) and charge pump, the equivalent SPO has been decreased by a factor equal to the gain of the gain stage. The effectiveness of the proposed technique is validated by a Simulink model of MDLL. The equivalent SPO is measured by the power level of reference spur.展开更多
Fifth generation(5G)wireless networks must meet the needs of emerging technologies like the Internet of Things(IoT),Vehicle-to-everything(V2X),Video on Demand(VoD)services,Device to Device communication(D2D)and many o...Fifth generation(5G)wireless networks must meet the needs of emerging technologies like the Internet of Things(IoT),Vehicle-to-everything(V2X),Video on Demand(VoD)services,Device to Device communication(D2D)and many other bandwidth-hungry multimedia applications that connect a huge number of devices.5G wireless networks demand better bandwidth efficiency,high data rates,low latency,and reduced spectral leakage.To meet these requirements,a suitable 5G waveform must be designed.In this work,a waveform namely Shaped Offset Quadrature Phase Shift Keying based Orthogonal Frequency Division Multiplexing(SOQPSK-OFDM)is proposed for 5G to provide bandwidth efficiency,reduced spectral leakage,and Bit Error Rate(BER).The proposed work is evaluated using a real-time Software Defined Radio(SDR)testbed-Wireless open Access Research Platform(WARP).Experimental and simulation results show that the proposed 5G waveform exhibits better BER performance and reduced Out of Band(OOB)radia-tion when compared with other waveforms like Offset Quadrature Phase Shift Key-ing(OQPSK)and Quadrature Phase Shift Keying(QPSK)based OFDM and a 5G waveform candidate Generalized Frequency Division Multiplexing(GFDM).BER analysis shows that the proposed SOQPSK-OFDM waveform attains a Signal to Noise Ratio(SNR)gain of 7.2 dB at a BER of 10�3,when compared with GFDM in a real-time indoor environment.An SNR gain of 8 and 6 dB is achieved by the proposed work for a BER of 10�4 when compared with QPSK-OFDM and OQPSK-OFDM signals,respectively.A significant reduction in OOB of nearly 15 dB is achieved by the proposed work SOQPSK-OFDM when compared to 16 Quadrature Amplitude Modulation(QAM)mapped OFDM.展开更多
A scanning and uniform array architecture with large spacing,low complexity and high scalability is presented for high integration massive array applications.It is constructed by offset phase center elements arranged ...A scanning and uniform array architecture with large spacing,low complexity and high scalability is presented for high integration massive array applications.It is constructed by offset phase center elements arranged in a uniform and regular way,but its spacing can be larger than that of traditional arrays.An ideal model of the offset phase center element is established and its far-field distribution is derived.To suppress grating lobes,the phase center of any element is designed to be movable without changing its physical position.Using genetic algorithm(GA),a new constraint condition limiting the number of phase center changes is proposed to solve the objective function of the minimum values of grating lobes(GLs)and side lobes(SLs).It is shown that the optimal results can be achieved by two changes of phase centers.A multimode circular patch is developed and designed,and characteristics of the offset phase center are analyzed and verified.A prototype array of 12×12 offset phase center elements is implemented based on multi-mode circular patches.Full wave simulation results of radiation patterns show that the level of grating lobes is suppressed at least 7dB with 1.12λ spacing,while the scanning angle is 20°.展开更多
The correction for antenna phase center is considered in processing Global Positioning System (GPS) data collected from a network of GPS ultra-short baselines. Compared with the leveling measurements, the GPS result...The correction for antenna phase center is considered in processing Global Positioning System (GPS) data collected from a network of GPS ultra-short baselines. Compared with the leveling measurements, the GPS results show that the relative vertical offsets for the pairs of GPS receiver antenna phase centers still exist, although absolute calibration of the antenna phase center variations (PCVs) has been considered. With respect to the TPS CR.G3 antenna, the relative vertical offset for the LEI AT504 antenna is 8.4 mm, the offset for the ASH701945C_M antenna is 5.5 mm, and those for the ASHY00936E_C and ASH701945B_M antennas are approximately between 2 mm and -3 mm. The relative offsets for the same type of antennas are approximately 1 mm. By correcting the absolute PCVs, the existing relative offset becomes negligible for horizontal positioning.展开更多
A new digital communication technology based on the Phase-Offset Overlapped Waves (POOW) has been introduced in this letter. The waves can be considered as a special multicarrier different from traditional ones. The s...A new digital communication technology based on the Phase-Offset Overlapped Waves (POOW) has been introduced in this letter. The waves can be considered as a special multicarrier different from traditional ones. The sub-waves in a coded word’s period of the POOW are sine waves and have the same frequencies, but different starting phases. The most important characteristic is that these sub-waves are the piecewise functions and not orthogonal in a code word period. The decoding can be implemented by solving a linear equation group. This code has very high efficiency and thus the data transmission rate is increased greatly.展开更多
A data-aided technique for cartier frequency offset estimation with continuous phase modulation (CPM) in burst- mode transmission is presented. The proposed technique first exploits a special pilot sequence, or trai...A data-aided technique for cartier frequency offset estimation with continuous phase modulation (CPM) in burst- mode transmission is presented. The proposed technique first exploits a special pilot sequence, or training sequence, to form a sinusoidal waveform. Then, an improved dichotomous search frequency offset estimator is introduced to determine the frequency offset using the sinusoid. Theoretical analysis and simulation results indicate that our estimator is noteworthy in the following aspects. First, the estimator can operate independently of timing recovery. Second, it has relatively low outlier, i.e., the minimum signal-to-noise ratio (SNR) required to guarantee estimation accuracy. Finally, the most important property is that our estimator is complexity-reduced compared to the existing dichotomous search methods: it eliminates the need for fast Fourier transform (FFT) and modulation removal, and exhibits faster convergence rate without accuracy degradation.展开更多
基金supported by the National Natural Science Foundation of China under Grant 62071364 and 62231027in part by the Key Research and Development Program of Shaanxi under Grant 2023-YBGY-249+1 种基金in part by the Key Research and Development Program of Guangxi under Grant 2022AB46002in part by the Fundamental Research Funds for the Central Universities under Grant KYFZ23001.
文摘Modulation recognition becomes unreliable at low signal-to-noise ratio(SNR)over fading channel.A novel method is proposed to recognize the digital modulated signals with frequency and phase offsets over multi-path fading channels in this paper.This method can overcome the effects of phase offset,Gaussian noise and multi-path fading.To achieve this,firstly,the characteristic parameters search is constructed based on the cyclostationarity of received signals,to overcome the phase offset,Gaussian white noise,and influence caused by multi-path fading.Then,the carrier frequency of the received signal is estimated,and the maximum characteristic parameter is searched around the integer multiple carriers and their vicinities.Finally,the modulation types of the received signal with frequency and phase offsets are classified using decision thresholds.Simulation results demonstrate that the performance of the proposed method is better than the traditional methods when SNR is over 5dB,and that the proposed method is robust to frequency and phase offsets over multipath channels.
基金supported by the National Natural Science Foundation of China(No.91438114,No.61372111 and No.61601045)
文摘Spectral efficiency and energy efficiency are two important performance indicators of satellite systems. The Quasi-Constant Envelope Orthogonal Frequency Division Multiplexing(QCE-OFDM) technique can achieve both high spectral efficiency and low peak-to-average power ratio(PAPR). Therefore, the QCE-OFDM technique is considered as a promising candidate multi-carrier technique for satellite systems. However, the Doppler effect will cause the carrier frequency offset(CFO), and the non-ideal oscillator will cause the carrier phase offset(CPO) in satellite systems. The CFO and CPO will further result in the bit-error-rate(BER) performance degradation. Hence, it is important to estimate and compensate the CFO and CPO. This paper analyzes the effects of both CFO and CPO in QCE-OFDM satellite systems. Furthermore, we propose a joint CFO and CPO estimation method based on the pilot symbols in the frequency domain. In addition, the optimal pilot symbol structure with different pilot overheads is designed according to the minimum Cramer-Rao bound(CRB) criterion. Simulation results show that the estimation accuracy of the proposed method is close to the CRB.
基金supported by the National Natural Science Foundation of China (60972072)the National Science and Technology Major Projects: the New Generation Broadband Wireless Mobile Communication Network (2009ZX03003-03)the "111 Project" of China (B08038)
文摘An adaptive algorithm named low complexity phase off- set estimation (LC-POE) is proposed for orthogonal frequency division multiplexing (OFDM) signals. Depending on the requirement, the estimation procedure is divided into several scales to accelerate the adaptive convergence speed and ensure the estimation accuracy. The true phase offset is estimated through shrinking the detection range and raising the resolution scale step by step. Both the convergence performance and complexity are discussed in the paper. Simulation results show the effectiveness of the proposed algorithm. The LC-POE algorithm is promising in the application of OFDM systems.
文摘Static phase offset (SPO) in conventional multiplying delay-locked loops (MDLLs) dramatically degrades the deterministic jitter performance. To overcome the issue, this paper presents a new SPO reduction technique for MDLLs. The technique is based on the observation that the SPO of MDLL is mainly caused by the non-idealities on charge pump (e.g. sink and source current mismatch), and control line (e.g. gate leakage of loop filter and voltage controlled delay line (VCDL) control circuit). With a high gain stage inserting between phase detector/phase frequency detector (PD/PFD) and charge pump, the equivalent SPO has been decreased by a factor equal to the gain of the gain stage. The effectiveness of the proposed technique is validated by a Simulink model of MDLL. The equivalent SPO is measured by the power level of reference spur.
文摘Fifth generation(5G)wireless networks must meet the needs of emerging technologies like the Internet of Things(IoT),Vehicle-to-everything(V2X),Video on Demand(VoD)services,Device to Device communication(D2D)and many other bandwidth-hungry multimedia applications that connect a huge number of devices.5G wireless networks demand better bandwidth efficiency,high data rates,low latency,and reduced spectral leakage.To meet these requirements,a suitable 5G waveform must be designed.In this work,a waveform namely Shaped Offset Quadrature Phase Shift Keying based Orthogonal Frequency Division Multiplexing(SOQPSK-OFDM)is proposed for 5G to provide bandwidth efficiency,reduced spectral leakage,and Bit Error Rate(BER).The proposed work is evaluated using a real-time Software Defined Radio(SDR)testbed-Wireless open Access Research Platform(WARP).Experimental and simulation results show that the proposed 5G waveform exhibits better BER performance and reduced Out of Band(OOB)radia-tion when compared with other waveforms like Offset Quadrature Phase Shift Key-ing(OQPSK)and Quadrature Phase Shift Keying(QPSK)based OFDM and a 5G waveform candidate Generalized Frequency Division Multiplexing(GFDM).BER analysis shows that the proposed SOQPSK-OFDM waveform attains a Signal to Noise Ratio(SNR)gain of 7.2 dB at a BER of 10�3,when compared with GFDM in a real-time indoor environment.An SNR gain of 8 and 6 dB is achieved by the proposed work for a BER of 10�4 when compared with QPSK-OFDM and OQPSK-OFDM signals,respectively.A significant reduction in OOB of nearly 15 dB is achieved by the proposed work SOQPSK-OFDM when compared to 16 Quadrature Amplitude Modulation(QAM)mapped OFDM.
基金This work was supported by National Natural Science Foundation of China(No.U19B2028).
文摘A scanning and uniform array architecture with large spacing,low complexity and high scalability is presented for high integration massive array applications.It is constructed by offset phase center elements arranged in a uniform and regular way,but its spacing can be larger than that of traditional arrays.An ideal model of the offset phase center element is established and its far-field distribution is derived.To suppress grating lobes,the phase center of any element is designed to be movable without changing its physical position.Using genetic algorithm(GA),a new constraint condition limiting the number of phase center changes is proposed to solve the objective function of the minimum values of grating lobes(GLs)and side lobes(SLs).It is shown that the optimal results can be achieved by two changes of phase centers.A multimode circular patch is developed and designed,and characteristics of the offset phase center are analyzed and verified.A prototype array of 12×12 offset phase center elements is implemented based on multi-mode circular patches.Full wave simulation results of radiation patterns show that the level of grating lobes is suppressed at least 7dB with 1.12λ spacing,while the scanning angle is 20°.
基金supported by the Science for Earthquake Resilience(XH14070Y,XH15064Y)the China NationalSpecial Fund for Earthquake Scientific Research in Public Interest(201208009)
文摘The correction for antenna phase center is considered in processing Global Positioning System (GPS) data collected from a network of GPS ultra-short baselines. Compared with the leveling measurements, the GPS results show that the relative vertical offsets for the pairs of GPS receiver antenna phase centers still exist, although absolute calibration of the antenna phase center variations (PCVs) has been considered. With respect to the TPS CR.G3 antenna, the relative vertical offset for the LEI AT504 antenna is 8.4 mm, the offset for the ASH701945C_M antenna is 5.5 mm, and those for the ASHY00936E_C and ASH701945B_M antennas are approximately between 2 mm and -3 mm. The relative offsets for the same type of antennas are approximately 1 mm. By correcting the absolute PCVs, the existing relative offset becomes negligible for horizontal positioning.
文摘A new digital communication technology based on the Phase-Offset Overlapped Waves (POOW) has been introduced in this letter. The waves can be considered as a special multicarrier different from traditional ones. The sub-waves in a coded word’s period of the POOW are sine waves and have the same frequencies, but different starting phases. The most important characteristic is that these sub-waves are the piecewise functions and not orthogonal in a code word period. The decoding can be implemented by solving a linear equation group. This code has very high efficiency and thus the data transmission rate is increased greatly.
文摘针对非正交多址接入(non-orthogonal multiple access,NOMA)系统在无线环境下传输速率较低的问题,利用智能反射面(intelligent reflecting surface,IRS)可以改变入射信号相移的特性,提出一种基于IRS辅助上行NOMA和速率最大化算法.首先,在满足每个用户功率、每个用户最小速率、IRS相位偏移的约束条件下,构建一个联合用户功率、IRS相移多变量优化模型;然后,通过问题公式的等效简化将原非凸问题转换为2个容易处理的子问题;最后,通过交替方向乘子法(alternating direction method of multipliers,ADMM)、引入松弛变量等方法对子问题进行求解.仿真结果表明,相较于逐次凸逼近法(successiveconvexapproximation,SCA)所提出的算法平均提升了系统0.4 bit/(s·Hz)的和速率,证明了基于ADMM的算法有效提高系统的和速率.
基金supported by the National Natural Science Foundation of China(Grant No.61301179)the Doctorial Programs Foundation of the Ministry of Education,China(Grant No.20110203110011)the Programme of Introducing Talents of Discipline to Universities,China(Grant No.B08038)
文摘A data-aided technique for cartier frequency offset estimation with continuous phase modulation (CPM) in burst- mode transmission is presented. The proposed technique first exploits a special pilot sequence, or training sequence, to form a sinusoidal waveform. Then, an improved dichotomous search frequency offset estimator is introduced to determine the frequency offset using the sinusoid. Theoretical analysis and simulation results indicate that our estimator is noteworthy in the following aspects. First, the estimator can operate independently of timing recovery. Second, it has relatively low outlier, i.e., the minimum signal-to-noise ratio (SNR) required to guarantee estimation accuracy. Finally, the most important property is that our estimator is complexity-reduced compared to the existing dichotomous search methods: it eliminates the need for fast Fourier transform (FFT) and modulation removal, and exhibits faster convergence rate without accuracy degradation.