We investigate the role of quantum correlation around the quantum phase transitions by using quantum renormalization group theory. Numerical analysis indicates that quantum correlation as well as quantum nonlocality c...We investigate the role of quantum correlation around the quantum phase transitions by using quantum renormalization group theory. Numerical analysis indicates that quantum correlation as well as quantum nonlocality can efficiently detect the quantum critical point in the two-dimensional XY systems. The nonanalytic behavior of the first derivative of quantum correlation is observed at the critical point as the size of the model increases. Furthermore, we discuss the quantum correlation distribution in this system based on the square of concurrence(SC) and square of quantum discord(SQD). The monogamous properties of SC and SQD are obtained. Particularly, we prove that the quantum critical point can also be achieved by monogamy score.展开更多
In this paper, a Modified Complex Lapped Transform domain Motion Estimation (MCLT-ME) method to estimate the motion of video sequence is proposed. The proposed method is based on phase correlation of current window re...In this paper, a Modified Complex Lapped Transform domain Motion Estimation (MCLT-ME) method to estimate the motion of video sequence is proposed. The proposed method is based on phase correlation of current window region and corresponding window region, and provides a significant improvement in motion estimation.展开更多
The paper reports results of investigation on the harmonic detection technique of a complicated power supply system such as an AC excited generation system, which has a variable fundamental frequency and low order har...The paper reports results of investigation on the harmonic detection technique of a complicated power supply system such as an AC excited generation system, which has a variable fundamental frequency and low order harmonics with rich sub-harmonics whose frequencies are lower than the fundamental one. The in-phase correlation filtering technique, based on the frequency shifting principle, is proposed in this paper.Theoretical analysis and experimental results validate the effectiveness of this technique for the harmonic detections of AC excited generation systems.展开更多
Speedometer identification has been researched for many years.The common approaches to that problem are usually based on image subtraction,which does not adapt to image offsets caused by camera vibration.To cope with ...Speedometer identification has been researched for many years.The common approaches to that problem are usually based on image subtraction,which does not adapt to image offsets caused by camera vibration.To cope with the rapidity,robust and accurate requirements of this kind of work in dynamic scene,a fast speedometer identification algorithm is proposed,it utilizes phase correlation method based on regional entire template translation to estimate the offset between images.In order to effectively reduce unnecessary computation and false detection rate,an improved linear Hough transform method with two optimization strategies is presented for pointer line detection.Based on VC++ 6.0 software platform with OpenCV library,the algorithm performance under experiments has shown that it celerity and precision.展开更多
Point cloud registration is a fundamental task in both remote sensing,photogrammetry,and computer vision,which is to align multiple point clouds to the same coordinate frame.Especially in LiDAR odometry,by conducting ...Point cloud registration is a fundamental task in both remote sensing,photogrammetry,and computer vision,which is to align multiple point clouds to the same coordinate frame.Especially in LiDAR odometry,by conducting the transformation between two adjacent scans,the pose of the platform can be estimated.To be specific,the goal is to recover the relative six-degree-of-freedom(6 DoF)pose between the source point cloud and the target point cloud.In this paper,we explore the use of robust estimators in the phase correlation when registering two point clouds,enabling a 6 DoF pose estimation between point clouds in a sub-voxel accuracy.The estimator is a rule for calculating an estimate of a given quantity based on observed data.A robust estimator is an estimation rule that is insensitive to nonnormality and can estimate parameters of a given objective function from noisy observations.The proposed registration method is theoretically insensitive to noise and outliers than correspondence-based methods.Three core steps are involved in the method:transforming point clouds from the spatial domain to the frequency domain,decoupling of rotations and translations,and using robust estimators to estimate phase shifts.Since the estimation of transformation parameters lies in the calculation of phase shifts,robust estimators play a vital role in shift estimation accuracy.In this paper,we have tested the performance of six different robust estimators and provide comparisons and discussions on the contributions of robust estimators in the 3D phase correlation.Different point clouds from two urban scenarios and one indoor scene are tested.Results validate the proposed method can reach performance that predominant rotation and translation errors reaching less than 0.5°and 0.5 m,respectively.Moreover,the performance of various tested robust estimators is compared and discussed.展开更多
By using the generalized Debye diffraction integral, this paper studies the spatial correlation properties and phase singularity annihilation of apertured Gaussian Schell-model (GSM) beams in the focal region. It is...By using the generalized Debye diffraction integral, this paper studies the spatial correlation properties and phase singularity annihilation of apertured Gaussian Schell-model (GSM) beams in the focal region. It is shown that the width of the spectral degree of coherence can be larger, less than or equal to the corresponding width of spectral density, which depends not only on the scalar coherence length of the beams, but also on the truncation parameter. With a gradual increase of the truncation parameter, a pair of phase singularities of the spectral degree of coherence in the focal plane approaches each other, resulting in subwavelength structures. Finally, the annihilation of pairs of phase singularities takes place at a certain value of the truncation parameter. With increasing scalar coherence length, the annihilation occurs at the larger truncation parameter. However, the creation process of phase singularities outside the focal plane is not found for GSM beams.展开更多
Using computer-controlled liquid crystal display (LCD) as an image processor and a CCD camera as a detector, phase-only correlation measurement is performed with the aid of joint transform correlation method (JTC). Th...Using computer-controlled liquid crystal display (LCD) as an image processor and a CCD camera as a detector, phase-only correlation measurement is performed with the aid of joint transform correlation method (JTC). This computer -controlled LCD-CCD image processing system may be a powerful tool for defect detection, position control and pattern recognition. It enables new possibilities in analog real-time image processing. This is of great interest in microelectronic manufacturing today and in the future.展开更多
In this letter, the preparation of three ZrO2 phases has beed briefly described and their catalytic results have been presented for CO hydrogenation to olefin. These catalysts had a good selectivity for light olefin. ...In this letter, the preparation of three ZrO2 phases has beed briefly described and their catalytic results have been presented for CO hydrogenation to olefin. These catalysts had a good selectivity for light olefin. Monoclinic ZrO2 catalyst had a high selectivity for isobutene, while the other phase catalysts had not展开更多
Partial discharge measurement is one of the most effective methods to find insulation defects and early failure of high voltage power equipments. The accuracy is significantly reduced by the interference in the partia...Partial discharge measurement is one of the most effective methods to find insulation defects and early failure of high voltage power equipments. The accuracy is significantly reduced by the interference in the partial discharge on-site detection or on-line monitoring, especially by the pulse interference. This paper studies the phase correlation of some types of typical partial discharge pulses and their characteristics in time domain and frequency domain. By collecting enough partial discharge pulse data, the correlation coefficient can be calculated based on both phase correlation and waveform similarity. The type of pulse will be determined by the scope of the calculated correlation coefficient. The pulses with very strong correlation will be identified as periodic pulse interference. The pulses with very weak correlation will be identified as random pulse interference. Only the pulses whose correlation coefficients fall into a specific range will be identified as partial discharge signals. In laboratory, simulated pulse interference is injected into measurement circuit, and typical partial discharge pulses are sampled by a high-speed acquisition system. The pulse interference can be effectively separated from partial discharge signals by correlation coefficient.展开更多
In this work, the easy to use, simple and direct equations were formulated and tested. These equations can be used to calculate the mean values of the heat transfer coefficients of inside tube flow during phase change...In this work, the easy to use, simple and direct equations were formulated and tested. These equations can be used to calculate the mean values of the heat transfer coefficients of inside tube flow during phase change. Analytical and experimental methods were used to correlate these equations. Two different forms were used, one for evaporation case and the other for condensation case. Carbon dioxide, CO2, was used as case study. Correlated values of the mean heat transfer coefficients (hcor,.) were compared with the experimental results (he^e) and with other published result, a good agreement was noticed. The resulted correlations can be used to simplify the design and performance studies of both condensers and evaporators.展开更多
We investigate the prominent impacts of coupling strengths on the evolution of entanglement and quantum discord for a three-qubit system coupled to an XY spin-chain environment. In the case of a pure W state, more rob...We investigate the prominent impacts of coupling strengths on the evolution of entanglement and quantum discord for a three-qubit system coupled to an XY spin-chain environment. In the case of a pure W state, more robust, even larger nonzero quantum correlations can be obtained by tailoring the coupling strengths between the qubits and the environment. For a mixed state consisting of the GHZ and W states, the dynamics of entanglement and quantum discord can characterize the critical point of quantum phase transition. Remarkably, a large nonzero quantum discord is generally retained, while the nonzero entanglement can only be obtained as the system-environment coupling satisfies certain conditions. We also find that the impact of each qubit's coupling strength on the quantum correlation dynamics strongly depends on the variation schemes of the system-environment couplings.展开更多
Membrane gas-solvent contactors are a hybrid technology combining solvent absorption with membrane gas separation, which demonstrates potential for CO_2 capture through the ability of the membrane to rigidly control t...Membrane gas-solvent contactors are a hybrid technology combining solvent absorption with membrane gas separation, which demonstrates potential for CO_2 capture through the ability of the membrane to rigidly control the mass transfer area. Membrane contactors have been successfully demonstrated for CO_2 absorption, and there is strong research interest in using membrane contactors for the complimentary CO_2 desorption process to regenerate the solvent. However, understanding and modelling the various stages of mass transfer in the desorption process is less well-known, given the existing mass transfer correlations had been developed from absorption experiments. Hence, mass transfer correlations for membrane contactors are reviewed here, and their appropriateness for desorption analysed. This is achieved through simulating CO_2 desorption through a membrane contactor from loaded 30 wt% monoethanolamine solvent to enable comparison of the correlations. It was found that the most cited correlations by Yang and Cussler were valid for shell side parallel flow, while that of Kreith and Black was viable for shell side cross flow. A limitation of all of these correlations is that they assume single phase flow on both sides of the membrane; however, the high temperature of CO_2 desorption can lead to partial solvent vaporisation and hence two phases present on one side of the membrane contactor during desorption. A mass transfer correlation is established here for two phase parallel flow on the shell side of a membrane contactor, based on experimental results for three composite and one asymmetric hollow fibre membrane contactors stripping CO_2 from loaded MEA at 105–108 °C. This correlation is comparable to that reported in the literature for mass transfer in other two phase systems, but differs from the standard format for membrane contactors in terms of the exponent on the dimensionless Schmidt and Reynolds numbers.展开更多
The solubilities of a number of solid solutes in supercritical CO2 have been correlated usingthe model proposed in previous paper. The numbers of CO2 in each CO2 -solute cluster and the localdensity of the CO2 in the...The solubilities of a number of solid solutes in supercritical CO2 have been correlated usingthe model proposed in previous paper. The numbers of CO2 in each CO2 -solute cluster and the localdensity of the CO2 in the clusters are predicted using the model. The results calculated agree fairly wellwith the experimental data.展开更多
The spin-boson model with quadratic coupling is studied using the bosonic numerical renormalization group method.We focus on the dynamical auto-correlation functions CO(ω), with the operator taken as σx, σz, and ...The spin-boson model with quadratic coupling is studied using the bosonic numerical renormalization group method.We focus on the dynamical auto-correlation functions CO(ω), with the operator taken as σx, σz, and X, respectively. In the weak-coupling regime α 〈 αc, these functions show power law ω-dependence in the small frequency limit, with the powers 1 + 2s, 1 + 2s, and s, respectively. At the critical point α = αc of the boson-unstable quantum phase transition, the critical exponents yO of these correlation functions are obtained as yσx= yσz= 1-2s and yX=-s, respectively. Here s is the bath index and X is the boson displacement operator. Close to the spin flip point, the high frequency peak of Cσx(ω) is broadened significantly and the line shape changes qualitatively, showing enhanced dephasing at the spin flip point.展开更多
In order to further study the reliability of macro evaluation indexes,molecular dynamics (MD) was applied to the evaluation of asphalt binder.Micro evaluation indexes (potential energy,surface free energy,solubility p...In order to further study the reliability of macro evaluation indexes,molecular dynamics (MD) was applied to the evaluation of asphalt binder.Micro evaluation indexes (potential energy,surface free energy,solubility parameter and diffusion coefficient) of asphalt binder in different service phases (virgin,modified,aged and rejuvenated) were simulated.Combined with the variation characteristics of asphalt binder macro evaluation indexes (permeability,ductility,viscosity and softening point) in different service phases,the cross-scale correlation of macro-micro evaluation indexes was explored.The results show that the macro and micro evaluation indexes of asphalt binder have different characteristics in different service phases.The essence of the variation in the properties of asphalt binders is the difference in micro composition.In addition,there is a certain correlation between macro and micro evaluation indexes,which can be described by the gray relation theory.The cross-scale correlation of macro-micro evaluation indexes can provide a certain theoretical basis for the development of asphalt binder.展开更多
A dynamic experimental set-up was utilized to measure ibuprofen solubility in supercritical CO2 at the pressure range of 8-13 MPa and the temperatures of 308, 313 and 318 K. Mole fraction values varied from 0.015&#21...A dynamic experimental set-up was utilized to measure ibuprofen solubility in supercritical CO2 at the pressure range of 8-13 MPa and the temperatures of 308, 313 and 318 K. Mole fraction values varied from 0.015×10^-3 to 3.261×10^-3 and correlated by using seven different semi empirical equations of state (Bartle, Modi-fied Bartle, Mendez-Teja, Modified Mendez-Teja, Kumar-Johnson, Sung-shim and Gordillo) as well as seven cubic equations of state (van der Waals, Redlich-Kwong, Soave-Redlich-Kwong, Peng-Robinson, Stryjek-Vera, Patel-Teja-Valderana and Pazuki). Single and twin-parametric van der Walls mixing rules (vdW1, vdW2) were ap-plied in order to estimate the supercritical solution properties. The physicochemical properties were also obtained using Joback, Lydersen and Ambrose methods. Absolute average relatives deviation (AARD) were calculated and compared for all the correlating systems. Results showed that among the cubic equations of state (EOSs) the Pazuki equation (AARD=19.85% using vdW1 and AARD=8.79% using vdW2) and SRK equation (AARD=19.20%using vdW1 and AARD=10.03%using vdW2) predicted the ibuprofen solubility in supercritical CO2 with the least error in comparison to the others. Among the semi-empirical EOSs the most desirable deviation (AARD〈10%) was obtained by using Modified Bartle and Modified Mendez-Teja equations in all the studied temperatures.展开更多
In deep space exploration,it is necessary to improve the accuracy of frequency measurement to meet the requirements of precise orbit determination and various scientific studies.A phase detector is one of the key modu...In deep space exploration,it is necessary to improve the accuracy of frequency measurement to meet the requirements of precise orbit determination and various scientific studies.A phase detector is one of the key modules that restricts the tracking performance of phase-locked loop(PLL).Based on the phase relationship between adjacent signals in the time domain,a novel phase detector is presented to replace the arctangent phase detector.The new PLL,which is a closed loop signal correlation algorithm,shows good performance in tracking signals with high precision and the tracking accuracy of frequency of1 second integration is close to Cramer-Rao lower bound(CRLB)when setting proper parameters.Actual data processing results further illustrate the excellent performance of the novel PLL.展开更多
An algorithm for GPS receiver performing to mitigate cross correlations between weak satellite signal and strong satellite signals is presented.By using the tracking result of strong signal,the cross-correlation and c...An algorithm for GPS receiver performing to mitigate cross correlations between weak satellite signal and strong satellite signals is presented.By using the tracking result of strong signal,the cross-correlation and cross correlation sequence between weak signals and strong signal can be computed,further modifying the local generate C/A code to drive the cross correlation to zero. The advantage of this method is that it does not require estimation of the strong signal amplitude and it partially independent of the data bit value.Simulation result shows it can eliminate the interference of 75%,and this method is at the cost of sensitivity loss of 0.28dB.展开更多
Free surface elevation time series of breaking water waves were measured in a laboratory flume. This was done in order to analyze changes in wave characteristics as the waves propagated from deep water to the shore. A...Free surface elevation time series of breaking water waves were measured in a laboratory flume. This was done in order to analyze changes in wave characteristics as the waves propagated from deep water to the shore. A pair of parallel- wire capacitive wave gages was used to simultaneously measure free surface elevations at different positions along the flume. One gage was kept fixed near the wave generator to provide a reference while the other was moved in steps of 0.1 m in the vicinity of the break point. Data from these two wave gages measured at the same time constitute station-to-station free surface elevation time series. Fast Fourier Transform (FFT) based cross-correlation techniques were employed to determine the time lag between each pair of the time series. The time lag was used to compute the phase shift between the reference wave gage and that at various points along the flume. Phase differences between two points spaced 0.1 m apart were used to calculate local mean wave phase velocity for a point that lies in the middle. Results show that moving from deep water to shallow water, the measured mean phase velocity decreases almost linearly from about 1.75 m/s to about 1.50 m/s at the break point. Just after the break point, wave phase velocity abruptly increases to a maximum value of 1.87 m/s observed at a position 30 cm downstream of the break point. Thereafter, the phase velocity decreases, reaching a minimum of about 1.30 m/s.展开更多
基金supported by the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20171397)the National Natural Science Foundation of China(Grant Nos.11535004,11375086,1175085,and 11120101005)+1 种基金the Foundation for Encouragement of College of Sciences(Grant No.LYLZJJ1616)the Pre-research Foundation of Army Engineering University of PLA
文摘We investigate the role of quantum correlation around the quantum phase transitions by using quantum renormalization group theory. Numerical analysis indicates that quantum correlation as well as quantum nonlocality can efficiently detect the quantum critical point in the two-dimensional XY systems. The nonanalytic behavior of the first derivative of quantum correlation is observed at the critical point as the size of the model increases. Furthermore, we discuss the quantum correlation distribution in this system based on the square of concurrence(SC) and square of quantum discord(SQD). The monogamous properties of SC and SQD are obtained. Particularly, we prove that the quantum critical point can also be achieved by monogamy score.
文摘In this paper, a Modified Complex Lapped Transform domain Motion Estimation (MCLT-ME) method to estimate the motion of video sequence is proposed. The proposed method is based on phase correlation of current window region and corresponding window region, and provides a significant improvement in motion estimation.
文摘The paper reports results of investigation on the harmonic detection technique of a complicated power supply system such as an AC excited generation system, which has a variable fundamental frequency and low order harmonics with rich sub-harmonics whose frequencies are lower than the fundamental one. The in-phase correlation filtering technique, based on the frequency shifting principle, is proposed in this paper.Theoretical analysis and experimental results validate the effectiveness of this technique for the harmonic detections of AC excited generation systems.
基金Supported by the National Natural Science Foundation of China (61004139)Beijing Municipal Natural Science Foundation(4101001)2008 Yangtze Fund Scholar and Innovative Research Team Development Schemes of Ministry of Education
文摘Speedometer identification has been researched for many years.The common approaches to that problem are usually based on image subtraction,which does not adapt to image offsets caused by camera vibration.To cope with the rapidity,robust and accurate requirements of this kind of work in dynamic scene,a fast speedometer identification algorithm is proposed,it utilizes phase correlation method based on regional entire template translation to estimate the offset between images.In order to effectively reduce unnecessary computation and false detection rate,an improved linear Hough transform method with two optimization strategies is presented for pointer line detection.Based on VC++ 6.0 software platform with OpenCV library,the algorithm performance under experiments has shown that it celerity and precision.
基金National Key Research and Development Program of China under Project(No.2018YFB0505400)National Natural Science Foundation of China(No.41631178)。
文摘Point cloud registration is a fundamental task in both remote sensing,photogrammetry,and computer vision,which is to align multiple point clouds to the same coordinate frame.Especially in LiDAR odometry,by conducting the transformation between two adjacent scans,the pose of the platform can be estimated.To be specific,the goal is to recover the relative six-degree-of-freedom(6 DoF)pose between the source point cloud and the target point cloud.In this paper,we explore the use of robust estimators in the phase correlation when registering two point clouds,enabling a 6 DoF pose estimation between point clouds in a sub-voxel accuracy.The estimator is a rule for calculating an estimate of a given quantity based on observed data.A robust estimator is an estimation rule that is insensitive to nonnormality and can estimate parameters of a given objective function from noisy observations.The proposed registration method is theoretically insensitive to noise and outliers than correspondence-based methods.Three core steps are involved in the method:transforming point clouds from the spatial domain to the frequency domain,decoupling of rotations and translations,and using robust estimators to estimate phase shifts.Since the estimation of transformation parameters lies in the calculation of phase shifts,robust estimators play a vital role in shift estimation accuracy.In this paper,we have tested the performance of six different robust estimators and provide comparisons and discussions on the contributions of robust estimators in the 3D phase correlation.Different point clouds from two urban scenarios and one indoor scene are tested.Results validate the proposed method can reach performance that predominant rotation and translation errors reaching less than 0.5°and 0.5 m,respectively.Moreover,the performance of various tested robust estimators is compared and discussed.
基金supported by the National Natural Science Foundation of China (Grant No 10574097)the Youth Foundation of University of Electronics Science and Technology of China
文摘By using the generalized Debye diffraction integral, this paper studies the spatial correlation properties and phase singularity annihilation of apertured Gaussian Schell-model (GSM) beams in the focal region. It is shown that the width of the spectral degree of coherence can be larger, less than or equal to the corresponding width of spectral density, which depends not only on the scalar coherence length of the beams, but also on the truncation parameter. With a gradual increase of the truncation parameter, a pair of phase singularities of the spectral degree of coherence in the focal plane approaches each other, resulting in subwavelength structures. Finally, the annihilation of pairs of phase singularities takes place at a certain value of the truncation parameter. With increasing scalar coherence length, the annihilation occurs at the larger truncation parameter. However, the creation process of phase singularities outside the focal plane is not found for GSM beams.
基金National Studying Abroad Foundation Management Commission of China!(No. 98822014)
文摘Using computer-controlled liquid crystal display (LCD) as an image processor and a CCD camera as a detector, phase-only correlation measurement is performed with the aid of joint transform correlation method (JTC). This computer -controlled LCD-CCD image processing system may be a powerful tool for defect detection, position control and pattern recognition. It enables new possibilities in analog real-time image processing. This is of great interest in microelectronic manufacturing today and in the future.
文摘In this letter, the preparation of three ZrO2 phases has beed briefly described and their catalytic results have been presented for CO hydrogenation to olefin. These catalysts had a good selectivity for light olefin. Monoclinic ZrO2 catalyst had a high selectivity for isobutene, while the other phase catalysts had not
文摘Partial discharge measurement is one of the most effective methods to find insulation defects and early failure of high voltage power equipments. The accuracy is significantly reduced by the interference in the partial discharge on-site detection or on-line monitoring, especially by the pulse interference. This paper studies the phase correlation of some types of typical partial discharge pulses and their characteristics in time domain and frequency domain. By collecting enough partial discharge pulse data, the correlation coefficient can be calculated based on both phase correlation and waveform similarity. The type of pulse will be determined by the scope of the calculated correlation coefficient. The pulses with very strong correlation will be identified as periodic pulse interference. The pulses with very weak correlation will be identified as random pulse interference. Only the pulses whose correlation coefficients fall into a specific range will be identified as partial discharge signals. In laboratory, simulated pulse interference is injected into measurement circuit, and typical partial discharge pulses are sampled by a high-speed acquisition system. The pulse interference can be effectively separated from partial discharge signals by correlation coefficient.
文摘In this work, the easy to use, simple and direct equations were formulated and tested. These equations can be used to calculate the mean values of the heat transfer coefficients of inside tube flow during phase change. Analytical and experimental methods were used to correlate these equations. Two different forms were used, one for evaporation case and the other for condensation case. Carbon dioxide, CO2, was used as case study. Correlated values of the mean heat transfer coefficients (hcor,.) were compared with the experimental results (he^e) and with other published result, a good agreement was noticed. The resulted correlations can be used to simplify the design and performance studies of both condensers and evaporators.
基金supported by National Basic Research Program of China(Grant No.2013CBA01702)National Natural Science Foundation of China(Grant Nos.61377016,61575055,10974039,61307072,61308017,and 61405056)
文摘We investigate the prominent impacts of coupling strengths on the evolution of entanglement and quantum discord for a three-qubit system coupled to an XY spin-chain environment. In the case of a pure W state, more robust, even larger nonzero quantum correlations can be obtained by tailoring the coupling strengths between the qubits and the environment. For a mixed state consisting of the GHZ and W states, the dynamics of entanglement and quantum discord can characterize the critical point of quantum phase transition. Remarkably, a large nonzero quantum discord is generally retained, while the nonzero entanglement can only be obtained as the system-environment coupling satisfies certain conditions. We also find that the impact of each qubit's coupling strength on the quantum correlation dynamics strongly depends on the variation schemes of the system-environment couplings.
文摘Membrane gas-solvent contactors are a hybrid technology combining solvent absorption with membrane gas separation, which demonstrates potential for CO_2 capture through the ability of the membrane to rigidly control the mass transfer area. Membrane contactors have been successfully demonstrated for CO_2 absorption, and there is strong research interest in using membrane contactors for the complimentary CO_2 desorption process to regenerate the solvent. However, understanding and modelling the various stages of mass transfer in the desorption process is less well-known, given the existing mass transfer correlations had been developed from absorption experiments. Hence, mass transfer correlations for membrane contactors are reviewed here, and their appropriateness for desorption analysed. This is achieved through simulating CO_2 desorption through a membrane contactor from loaded 30 wt% monoethanolamine solvent to enable comparison of the correlations. It was found that the most cited correlations by Yang and Cussler were valid for shell side parallel flow, while that of Kreith and Black was viable for shell side cross flow. A limitation of all of these correlations is that they assume single phase flow on both sides of the membrane; however, the high temperature of CO_2 desorption can lead to partial solvent vaporisation and hence two phases present on one side of the membrane contactor during desorption. A mass transfer correlation is established here for two phase parallel flow on the shell side of a membrane contactor, based on experimental results for three composite and one asymmetric hollow fibre membrane contactors stripping CO_2 from loaded MEA at 105–108 °C. This correlation is comparable to that reported in the literature for mass transfer in other two phase systems, but differs from the standard format for membrane contactors in terms of the exponent on the dimensionless Schmidt and Reynolds numbers.
文摘The solubilities of a number of solid solutes in supercritical CO2 have been correlated usingthe model proposed in previous paper. The numbers of CO2 in each CO2 -solute cluster and the localdensity of the CO2 in the clusters are predicted using the model. The results calculated agree fairly wellwith the experimental data.
基金supported by the National Key Basic Research Program of China(Grant No.2012CB921704)the National Natural Science Foundation of China(Grant No.11374362)+1 种基金the Fundamental Research Funds for the Central Universities,Chinathe Research Funds of Renmin University of China(Grant No.15XNLQ03)
文摘The spin-boson model with quadratic coupling is studied using the bosonic numerical renormalization group method.We focus on the dynamical auto-correlation functions CO(ω), with the operator taken as σx, σz, and X, respectively. In the weak-coupling regime α 〈 αc, these functions show power law ω-dependence in the small frequency limit, with the powers 1 + 2s, 1 + 2s, and s, respectively. At the critical point α = αc of the boson-unstable quantum phase transition, the critical exponents yO of these correlation functions are obtained as yσx= yσz= 1-2s and yX=-s, respectively. Here s is the bath index and X is the boson displacement operator. Close to the spin flip point, the high frequency peak of Cσx(ω) is broadened significantly and the line shape changes qualitatively, showing enhanced dephasing at the spin flip point.
基金Funded by the Fundamental Research Funds for the Central Universities (No. 2572021AW10)。
文摘In order to further study the reliability of macro evaluation indexes,molecular dynamics (MD) was applied to the evaluation of asphalt binder.Micro evaluation indexes (potential energy,surface free energy,solubility parameter and diffusion coefficient) of asphalt binder in different service phases (virgin,modified,aged and rejuvenated) were simulated.Combined with the variation characteristics of asphalt binder macro evaluation indexes (permeability,ductility,viscosity and softening point) in different service phases,the cross-scale correlation of macro-micro evaluation indexes was explored.The results show that the macro and micro evaluation indexes of asphalt binder have different characteristics in different service phases.The essence of the variation in the properties of asphalt binders is the difference in micro composition.In addition,there is a certain correlation between macro and micro evaluation indexes,which can be described by the gray relation theory.The cross-scale correlation of macro-micro evaluation indexes can provide a certain theoretical basis for the development of asphalt binder.
文摘A dynamic experimental set-up was utilized to measure ibuprofen solubility in supercritical CO2 at the pressure range of 8-13 MPa and the temperatures of 308, 313 and 318 K. Mole fraction values varied from 0.015×10^-3 to 3.261×10^-3 and correlated by using seven different semi empirical equations of state (Bartle, Modi-fied Bartle, Mendez-Teja, Modified Mendez-Teja, Kumar-Johnson, Sung-shim and Gordillo) as well as seven cubic equations of state (van der Waals, Redlich-Kwong, Soave-Redlich-Kwong, Peng-Robinson, Stryjek-Vera, Patel-Teja-Valderana and Pazuki). Single and twin-parametric van der Walls mixing rules (vdW1, vdW2) were ap-plied in order to estimate the supercritical solution properties. The physicochemical properties were also obtained using Joback, Lydersen and Ambrose methods. Absolute average relatives deviation (AARD) were calculated and compared for all the correlating systems. Results showed that among the cubic equations of state (EOSs) the Pazuki equation (AARD=19.85% using vdW1 and AARD=8.79% using vdW2) and SRK equation (AARD=19.20%using vdW1 and AARD=10.03%using vdW2) predicted the ibuprofen solubility in supercritical CO2 with the least error in comparison to the others. Among the semi-empirical EOSs the most desirable deviation (AARD〈10%) was obtained by using Modified Bartle and Modified Mendez-Teja equations in all the studied temperatures.
基金supported by the National Natural Science Foundation of China(11773060,11973074,U1831137,11703070 and 11803069)the National Key Basic Research and Development Program(2018YFA0404702)+1 种基金Shanghai Key Laboratory of Space Navigation and Positioning(3912DZ227330001)the Key Laboratory for Radio Astronomy of CAS。
文摘In deep space exploration,it is necessary to improve the accuracy of frequency measurement to meet the requirements of precise orbit determination and various scientific studies.A phase detector is one of the key modules that restricts the tracking performance of phase-locked loop(PLL).Based on the phase relationship between adjacent signals in the time domain,a novel phase detector is presented to replace the arctangent phase detector.The new PLL,which is a closed loop signal correlation algorithm,shows good performance in tracking signals with high precision and the tracking accuracy of frequency of1 second integration is close to Cramer-Rao lower bound(CRLB)when setting proper parameters.Actual data processing results further illustrate the excellent performance of the novel PLL.
文摘An algorithm for GPS receiver performing to mitigate cross correlations between weak satellite signal and strong satellite signals is presented.By using the tracking result of strong signal,the cross-correlation and cross correlation sequence between weak signals and strong signal can be computed,further modifying the local generate C/A code to drive the cross correlation to zero. The advantage of this method is that it does not require estimation of the strong signal amplitude and it partially independent of the data bit value.Simulation result shows it can eliminate the interference of 75%,and this method is at the cost of sensitivity loss of 0.28dB.
文摘Free surface elevation time series of breaking water waves were measured in a laboratory flume. This was done in order to analyze changes in wave characteristics as the waves propagated from deep water to the shore. A pair of parallel- wire capacitive wave gages was used to simultaneously measure free surface elevations at different positions along the flume. One gage was kept fixed near the wave generator to provide a reference while the other was moved in steps of 0.1 m in the vicinity of the break point. Data from these two wave gages measured at the same time constitute station-to-station free surface elevation time series. Fast Fourier Transform (FFT) based cross-correlation techniques were employed to determine the time lag between each pair of the time series. The time lag was used to compute the phase shift between the reference wave gage and that at various points along the flume. Phase differences between two points spaced 0.1 m apart were used to calculate local mean wave phase velocity for a point that lies in the middle. Results show that moving from deep water to shallow water, the measured mean phase velocity decreases almost linearly from about 1.75 m/s to about 1.50 m/s at the break point. Just after the break point, wave phase velocity abruptly increases to a maximum value of 1.87 m/s observed at a position 30 cm downstream of the break point. Thereafter, the phase velocity decreases, reaching a minimum of about 1.30 m/s.