期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
A general phase retrieval algorithm based on a ptychographical iterative engine for coherent diffractive imaging 被引量:1
1
作者 傅健 李鹏 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第1期243-248,共6页
Coherent diffractive imaging (CDI) is a lensless imaging technique and can achieve a resolution beyond the Rayleigh or Abbe limit. The ptychographical iterative engine (PIE) is a CDI phase retrieval algorithm that... Coherent diffractive imaging (CDI) is a lensless imaging technique and can achieve a resolution beyond the Rayleigh or Abbe limit. The ptychographical iterative engine (PIE) is a CDI phase retrieval algorithm that uses multiple diffraction patterns obtained through the scan of a localized illumination on the specimen, which has been demonstrated successfully at optical and X-ray wavelengths. In this paper, a general PIE algorithm (gPIE) is presented and demonstrated with an He-Ne laser light diffraction dataset. This algorithm not only permits the removal of the accurate model of the illumination function in PIE, but also provides improved convergence speed and retrieval quality. 展开更多
关键词 phase retrieval algorithm coherent diffractive imaging PTYCHOGRAPHY
下载PDF
Convolutional neural network for transient grating frequency-resolved optical gating trace retrieval and its algorithm optimization 被引量:1
2
作者 Siyuan Xu Xiaoxian Zhu +7 位作者 Ji Wang Yuanfeng Li Yitan Gao Kun Zhao Jiangfeng Zhu Dacheng Zhang Yunlin Chen Zhiyi Wei 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第4期586-590,共5页
A convolutional neural network is employed to retrieve the time-domain envelop and phase of few-cycle femtosecond pulses from transient-grating frequency-resolved optical gating(TG-FROG) traces.We use theoretically ge... A convolutional neural network is employed to retrieve the time-domain envelop and phase of few-cycle femtosecond pulses from transient-grating frequency-resolved optical gating(TG-FROG) traces.We use theoretically generated TGFROG traces to complete supervised trainings of the convolutional neural networks,then use similarly generated traces not included in the training dataset to test how well the networks are trained.Accurate retrieval of such traces by the neural network is realized.In our case,we find that networks with exponential linear unit(ELU) activation function perform better than those with leaky rectified linear unit(LRELU) and scaled exponential linear unit(SELU).Finally,the issues that need to be addressed for the retrieval of experimental data by this method are discussed. 展开更多
关键词 transient-grating frequency-resolved optical gating convolutional neural network activation function phase retrieval algorithm
下载PDF
Deep-learning-based cryptanalysis of two types of nonlinear optical cryptosystems
3
作者 Xiao-Gang Wang Hao-Yu Wei 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第9期293-300,共8页
The two types of nonlinear optical cryptosystems(NOCs)that are respectively based on amplitude-phase retrieval algorithm(APRA)and phase retrieval algorithm(PRA)have attracted a lot of attention due to their unique mec... The two types of nonlinear optical cryptosystems(NOCs)that are respectively based on amplitude-phase retrieval algorithm(APRA)and phase retrieval algorithm(PRA)have attracted a lot of attention due to their unique mechanism of encryption process and remarkable ability to resist common attacks.In this paper,the securities of the two types of NOCs are evaluated by using a deep-learning(DL)method,where an end-to-end densely connected convolutional network(DenseNet)model for cryptanalysis is developed.The proposed DL-based method is able to retrieve unknown plaintexts from the given ciphertexts by using the trained DenseNet model without prior knowledge of any public or private key.The results of numerical experiments with the DenseNet model clearly demonstrate the validity and good performance of the proposed the DL-based attack on NOCs. 展开更多
关键词 optical encryption nonlinear optical cryptosystem deep learning phase retrieval algorithm
下载PDF
Dynamic imaging through scattering medium under white-light illumination [Invited] 被引量:1
4
作者 Junyao Lei Hui Chen +4 位作者 Yuan Yuan Yunong Sun Jianbin Liu Huaibin Zheng Yuchen He 《Chinese Optics Letters》 SCIE EI CAS CSCD 2024年第6期46-51,共6页
Imaging objects hidden behind turbid media is of great scientific importance and practical value, which has been drawing a lot of attention recently. However, most of the scattering imaging methods rely on a narrow li... Imaging objects hidden behind turbid media is of great scientific importance and practical value, which has been drawing a lot of attention recently. However, most of the scattering imaging methods rely on a narrow linewidth of light, limiting their application. A mixture of the scattering light from various spectra blurs the detected speckle pattern, bringing difficulty in phase retrieval. Image reconstruction becomes much worse for dynamic objects due to short exposure times. We here investigate non-invasively recovering images of dynamic objects under white-light irradiation with the multi-frame OTF retrieval engine (MORE). By exploiting redundant information from multiple measurements, MORE recovers the phases of the optical-transfer-function (OTF) instead of recovering a single image of an object. Furthermore, we introduce the number of non-zero pixels (NNP) into MORE, which brings improvement on recovered images. An experimental proof is performed for dynamic objects at a frame rate of 20 Hz under white-light irradiation of more than 300 nm bandwidth. 展开更多
关键词 scattering imaging white light illumination phase retrieval algorithm
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部