Phase transformation is one of the factors that would significantly influence the ability to resist cavitation erosion of stainless steels. Due to the specific properties of duplex stainless steel, the heat treatment ...Phase transformation is one of the factors that would significantly influence the ability to resist cavitation erosion of stainless steels. Due to the specific properties of duplex stainless steel, the heat treatment would bring about significant phase transformations. In this paper, we have examined the previous studies on the phase transition of stainless steel, including the literature on the classification of stainless steel, spinodal decomposition, sigma phase transformation, and cavitation erosion of double stainless steel. Through these literature investigations, the destruction of cavitation erosion on duplex stainless steel can be clearly known, and the causes of failure of duplex stainless steel in seawater can be clarified, thus providing a theoretical basis for subsequent scientific research. And the review is about to help assess the possibility of using bulk heat treatment to improve the cavitation erosion (CE) behaviour of the duplex stainless steel 7MoPLUS.展开更多
The hydrogen-induced microstructure evolution and phase transformations in Ti-6Al-4V alloy during heating and cooling were studied.The specimens were heated to 1273 K and subsequently cooled to room temperature.The hy...The hydrogen-induced microstructure evolution and phase transformations in Ti-6Al-4V alloy during heating and cooling were studied.The specimens were heated to 1273 K and subsequently cooled to room temperature.The hydrogen content is up to 0.8%(mass fraction).The hydrogen-induced dynamic phase transformations and the corresponding mechanisms were analyzed.When the hydrogen content increases,the β transus temperature significantly decreases and the magnitude decreases,and the volume fraction of β phase increases.During heating,the phase transformations in hydrogenated Ti-6Al-4V alloys can be divided into three stages,and the phase transformation order is δ→α+H2↑?δ+α′→βH?α′→αH+βH?αH→α+H2↑?α→β?βH→β+H2↑.In addition,the relationship among hydrogenation and Ms and Mf of α′ martensite were determined.展开更多
Both furnace cooled and as-cast eutectoid Zn-Al alloys were investigated under external tensile stress at 100℃. It was observed that the external tensile stress caused decomposition of two metastable phases η'T ...Both furnace cooled and as-cast eutectoid Zn-Al alloys were investigated under external tensile stress at 100℃. It was observed that the external tensile stress caused decomposition of two metastable phases η'T and η'S which derived from both original state of the alloy, and a phase transformation, αf +ε→T' +η, in both furnace cooled and as-cast eutectoid Zn-Al alloys. Also spheroidized structure formed partially during tensile testing. Superplasticity of the alloy has been discussed correlating with the phase transformations and microstructural changes.展开更多
The phase transformations in Ti-10V-2Fe-3AI alloy during aging have been studied by means of X-ray diffraction and TEM techniques.The morphology and distribution of precipi- tated phases were examined.The lattice para...The phase transformations in Ti-10V-2Fe-3AI alloy during aging have been studied by means of X-ray diffraction and TEM techniques.The morphology and distribution of precipi- tated phases were examined.The lattice parameters of α and β phases as a function of the ag- ing time is obtained,the hardness variation of the specimens related to the aging temperature and time has been given as well.展开更多
Intermetallics and phase transformations of the zirconium-based alloy, Zr-1.0Sn-0.3Nb-0.3Fe-0.1Cr, were investigated by conventional X-ray diffraction (XRD), differential scanning calorimetry (DSC), and dilation m...Intermetallics and phase transformations of the zirconium-based alloy, Zr-1.0Sn-0.3Nb-0.3Fe-0.1Cr, were investigated by conventional X-ray diffraction (XRD), differential scanning calorimetry (DSC), and dilation measurement. Three types of precipitates, namely, (ZrNb)2Fe, Zr(CrFe)2, and Zr3Fe, were detected by XRD. The cubic Ti2Ni-type (ZrNb)2Fe was found to be the main precipitate in the alloy, and it was proposed to dissolve at 861℃, whereas Zr3Fe dissolved at 780℃ and Zr(CrFe)2 at 814℃. No precipitates were observed at a temperature higher than 900℃. The transformation-start temperature of α-Zr → β-Zr was reconfirmed to be 780℃, and the end temperature of α-Zr →βZr was determined to be 955℃. The dilation result also revealed that the martensitic transformation-start temperature, Ms, and the finish temperature, Mf, of this alloy were 741℃ and 645℃, respectively.展开更多
The effects of tensile temperatures ranging from 100 K to 900 K on the phase transition of hexagonal close-packed(HCP)zirconium were investigated by molecular dynamics simulations,which were combined with experimental...The effects of tensile temperatures ranging from 100 K to 900 K on the phase transition of hexagonal close-packed(HCP)zirconium were investigated by molecular dynamics simulations,which were combined with experimental observation under high resolution transmission electron microscopy.The results show that externally applied loading first induced the HCP to body-centered cubic(BCC)phase transition in the Pitsch-Schrader(PS)orientation relationship(OR).Then,the face-centered cubic(FCC)structure transformed from the BCC phase in the Bain path.However,the HCP-to-BCC transition was incomplete at 100 K and 300 K,resulting in a prismatic-type OR between the FCC and original HCP phase.Additionally,at the temperature ranging from 100 K to 600 K,the inverse BCC-to-HCP transition occurred locally following other variants of the PS OR,resulting in a basal-type relation between the newly generated HCP and FCC phases.A higher tensile temperature promoted the amount of FCC phase transforming into the BCC phase when the strain exceeded 45%.Besides,the crystal stretched at lower temperatures exhibits relatively higher strength but by the compromise of plasticity.This study reveals the deformation mechanisms in HCP-Zr at different temperatures,which may provide a better understanding of the deformation mechanism of zirconium alloys under different application environments.展开更多
The microstructural evolution and phase transformations of mechanically stirred non-dendritic ZA27 alloy during partial remelting were studied by using scanning electron microscopy and X-ray diffraction technique.The ...The microstructural evolution and phase transformations of mechanically stirred non-dendritic ZA27 alloy during partial remelting were studied by using scanning electron microscopy and X-ray diffraction technique.The partial remelting temperature was 460℃ and lower than the stirring temperature of 465℃.So the microstructure with globular grains needed for semi-solid forming can not be obtained and the starting primary non-dendritic grains change in turn to connect non-dendritic grains, long chain-like structures and finally to coarsen connect grains.However,the small near-equiaxed grains between the primary non-dendritic grains are evolved into small globular grains gradually,some of which are also attached to the primary non-dendritic grains during the subsequent heating.The X-ray diffraction results show that a series of phase transformations, α+η+ε→β,η+β→L,β→α′+L,α+η+ε→α′ and α′→L, occur successively during this process.The main reason why the starting primary non-dendritic grains do not separate into the needed independent globular grains is that the reactions of η+β→L and α′→L do not occur or occurr incompletely in the layers used to connect the primary non-dendritic grains.展开更多
The effects of shock loading on the morphology,grain growth during heating and phase transforma- tion of ZrO_2 have been investigated.It is shown that shock loading may be efficiently used to modify submicron ceramic ...The effects of shock loading on the morphology,grain growth during heating and phase transforma- tion of ZrO_2 have been investigated.It is shown that shock loading may be efficiently used to modify submicron ceramic powders with nanocrystalline structure.After shock loading,the critical diameter of ZrO_2 particles transformed from tetragonal to monoclinic decreased due to stored strain energy. Annealing of powders resulted in reversible transformation to the tetragonal without considerable grain growth up to 1200℃.展开更多
The effect of prior microstructure on the kinetics of the α- β phase transformation in Zr-1.14 wt%Cr 0.08 wt%Fe alloy was studied. Specimens of different metallurgical histories and hence microstructures were prepar...The effect of prior microstructure on the kinetics of the α- β phase transformation in Zr-1.14 wt%Cr 0.08 wt%Fe alloy was studied. Specimens of different metallurgical histories and hence microstructures were prepared. Thermoelectric power (TEP) measurements and optical metallographt wereused to examine the transformations produced in these three kinds of specimens when they were reheated totemperatures 800~100℃ at different heating rates (slow and fast). The results indicate that the kinetics ofthe α-βphase transformation is strongly influenced by the metallurgical history of specimens. The presenceof nonequilibnum structures accelerates the phase transformation in the alloy and decreases the x-β transfor-mation temperature from 950℃ to 870℃. The influence of experimental conditions on the transformationkinetics is more complicated than that of metallurgical history. For an heated and as-received specimens, theα-βtransformation kinetics of the fast-heated specimens is slower than for the slow-heated specimens. How-ever. in the quenched specimens, the transformation kinetics of slow-heated specimens is greater than in fastheated specimens. This behaviour may be related to the size and shape of the Zr(CrFe)_2 precipitates andthe homogenization of the matrix.展开更多
A new continuous multi-phase transformation field model was established for liquid-solid-eutectoid transformation. Taking Fe-C alloy as an example, the model was used to simulate the evolution of the micro-morphology ...A new continuous multi-phase transformation field model was established for liquid-solid-eutectoid transformation. Taking Fe-C alloy as an example, the model was used to simulate the evolution of the micro-morphology of the liquid-solid phase transition, and the effects of temperature, solute and free energy on the nucleation of pearlite after the liquid-solid phase transition were analyzed. The micro-morphology of pearlite was simulated. The simulation results show that the austenite structure has hereditary effect on the pearlite, the morphology of pearlite structure was similar to that of the parent austenite. The eutectoid structure at the front of pearlite grows toward the interior of austenite grains in a bifurcation manner and in the spherical coronal shape. In addition, the growth rate of pearlite was related to the shape of concave-convex interface at the nucleation site, and the growth rate at the convex interface was faster than that at the concave interface.展开更多
Rare-earth(RE)elements,known as“industrial vitamins”,have permeated modern lives,especially in high-tech applications.Although the RE elements possess close chemical similarities and have been treated as“one elemen...Rare-earth(RE)elements,known as“industrial vitamins”,have permeated modern lives,especially in high-tech applications.Although the RE elements possess close chemical similarities and have been treated as“one element”in the periodic table,their characteristics differ from each other.The RE microalloying effect is the crux to ameliorate the physicomechanical and thermochemical properties of materials,thereby the study of RE-related phase diagrams becomes indispensable to the design and optimization of RE-containing materials.However,in reality,the knowledge base in this area is considerably scarce compared with that of other commonly-used elements.In this work,the phase equilibria,phase diagrams,phase transformations,and some recent examples of RE-containing materials design are summarized,with which one can predict the RE solubilities,the RE precipitates,as well as the corresponding service behaviors.The attainment of enhanced materials’properties suggests that the thermodynamic rules extracted from the phase diagrams could serve as fundamental criteria for the successful development of novel RE-containing materials.展开更多
A large-scale fine-grained Mg-Gd-Y-Zn-Zr alloy plate with high strength and ductility was successfully prepared by multi-pass friction stir processing(MFSP)technology in this work.The structure of grains and long peri...A large-scale fine-grained Mg-Gd-Y-Zn-Zr alloy plate with high strength and ductility was successfully prepared by multi-pass friction stir processing(MFSP)technology in this work.The structure of grains and long period stacking ordered(LPSO)phase were characterized,and the mechanical properties uniformity was investigated.Moreover,a quantitative relationship between the microstructure and tensile yield strength was established.The results showed that the grains in the processed zone(PZ)and interfacial zone(IZ)were refined from 50μm to 3μm and 4μm,respectively,and numerous original LPSO phases were broken.In IZ,some block-shaped 18R LPSO phases were transformed into needle-like 14H LPSO phases due to stacking faults and the short-range diffusion of solute atoms.The severe shear deformation in the form of kinetic energy caused profuse stacking fault to be generated and move rapidly,greatly increasing the transformation rate of LPSO phase.After MFSP,the ultimate tensile strength,yield strength and elongation to failure of the large-scale plate were 367 MPa,305 MPa and 18.0% respectively.Grain refinement and LPSO phase strengthening were the major strengthening mechanisms for the MFSP sample.In particularly,the strength of IZ was comparable to that of PZ because the strength contribution of the 14H LPSO phase offsets the lack of grain refinement strengthening in IZ.This result opposes the widely accepted notion that IZ is a weak region in MFSP-prepared large-scale fine-grained plate.展开更多
Effects of solute rare earth(RE)on continuous cooling transformation of a low-alloy Cr–Mo–V bainitic steel are investigated in detail by dilatometry,optical microscopy(OM),scanning electron microscopy(SEM)and transm...Effects of solute rare earth(RE)on continuous cooling transformation of a low-alloy Cr–Mo–V bainitic steel are investigated in detail by dilatometry,optical microscopy(OM),scanning electron microscopy(SEM)and transmission electron microscopy(TEM).Microstructures appeared in thermal dilatometric samples of both low-alloy Cr–Mo–V(RE)steels are composed of quasi-polygonal ferrite(QPF),degenerate pearlite(DP),granular bainite(GB),lath bainite(LB),and martensite(M)depending on cooling rate.When cooling rate is lower than 2°C/s,the addition of RE suppresses QPF transformation,and thereby inducing a broader transformation region of GB.When cooling rate ranges from 2 to 100°C/s,the addition of RE decreases the start temperature of bainitic transformation distinctly,which results in finer bainitic ferrite grain size and higher dislocation density.The addition of RE can enhance the hardness of the low alloy Cr–Mo–V steel by affecting the aforementioned diffusional and/or partly displacive transformation.However,when cooling rate increases up to 150°C/s,two steels have the same hardness value of about 435 HV due to only martensite obtained by displacive transformation.展开更多
The mechanism involved in the phase transformation process of pyrolusite (MnO_(2)) during roasting in a reducing atmosphere was systematically elucidated in this study,with the aim of effectively using low-grade compl...The mechanism involved in the phase transformation process of pyrolusite (MnO_(2)) during roasting in a reducing atmosphere was systematically elucidated in this study,with the aim of effectively using low-grade complex manganese ore resources.According to single-factor experiment results,the roasted product with a divalent manganese (Mn^(2+)) distribution rate of 95.30% was obtained at a roasting time of 25 min,a roasting temperature of 700℃,a CO concentration of 20at%,and a total gas volume of 500 mL·min^(-1),in which the manganese was mainly in the form of manganosite (MnO).Scanning electron microscopy and Brunauer–Emmett–Teller theory demonstrated the microstructural evolution of the roasted product and the gradual reduction in the pyrolusite ore from the surface to the core Thermodynamic calculations,X-ray photoelectron spectroscopy,and X-ray diffractometry analyses determined that the phase transformation of pyrolusite followed the order of MnO_(2)→Mn_(2)O_(3)→Mn_(3)O_(4)→MnO phase by phase,and the reduction of manganese oxides in each valence state proceeded simultaneously.展开更多
A time-resolved x-ray diffraction technique is employed to monitor the structural transformation of laser-shocked bismuth.Results reveal a retarded transformation from the shock-induced Bi-Ⅴphase to a metastable Bi-...A time-resolved x-ray diffraction technique is employed to monitor the structural transformation of laser-shocked bismuth.Results reveal a retarded transformation from the shock-induced Bi-Ⅴphase to a metastable Bi-Ⅳphase during the shock release,instead of the thermodynamically stable Bi-Ⅲphase.The emergence of the metastable Bi-Ⅳphase is understood by the competitive interplay between two transformation pathways towards the Bi-Ⅳand Bi-Ⅲ,respectively.The former is more rapid than the latter because the Bi-Ⅴto B-Ⅳtransformation is driven by interaction between the closest atoms while the Bi-Ⅴto B-Ⅲtransformation requires interaction between the second-closest atoms.The nucleation time for the Bi-Ⅴto Bi-Ⅳtransformation is determined to be 5.1±0.9 ns according to a classical nucleation model.This observation demonstrates the importance of the formation of the transient metastable phases,which can change the phase transformation pathway in a dynamic process.展开更多
Pyrolusite comprises the foremost manganese oxides and is a major source of manganese production.An innovative hydrogenbased mineral phase transformation technology to pyrolusite was proposed,where a 96.44%distributio...Pyrolusite comprises the foremost manganese oxides and is a major source of manganese production.An innovative hydrogenbased mineral phase transformation technology to pyrolusite was proposed,where a 96.44%distribution rate of divalent manganese(Mn^(2+))was observed at an optimal roasting temperature of 650℃,a roasting time of 25 min,and an H2 concentration of 20vol%;under these conditions.The manganese predominantly existed in the form of manganosite.This study investigated the generation mechanism of manganosite based on the reduction kinetics,phase transformation,and structural evolution of pyrolusite and revealed that high temperature improved the distribution rate,and the optimal kinetic model for the reaction was the random nucleation and growth model(reaction order,n=3/2)with an activation energy(E_(a))of 24.119 kJ·mol^(−1).Throughout the mineral phase transformation,manganese oxide from the outer layer of particles moves inward to the core.In addition,pyrolusite follows the reduction sequence of MnO_(2)→Mn_(2)O_(3)→Mn_(3)O_(4)→MnO,and the reduction of manganese oxides in each valence state simultaneously proceeds.These findings provide significant insight into the efficient and clean utilization of pyrolusite.展开更多
Due to a series of exceptional properties,titanium and titanium alloys have received extensive attention in recent years.Different from other alloy systems,there are two allotropes and a sequence of metastable phases ...Due to a series of exceptional properties,titanium and titanium alloys have received extensive attention in recent years.Different from other alloy systems,there are two allotropes and a sequence of metastable phases in titanium alloys.By summarizing the recent investigations,the phase transformation processes corresponding to the common phases and also some less reported phases are reviewed.For the phase transformation only involvingαandβphases,it can be divided intoβ→αtransformation and a reverse transformation.The former one has been demonstrated from the orientation relationship betweenαandβphases and the regulation ofαmorphology.For the latter transformation,the role of the stress has been discussed.In terms of the metastable phases,the mechanisms of phase formation and their effects on microstructure and mechanical properties have been discussed.Finally,some suggestions about the development of titanium alloys have been proposed.展开更多
The layeredδ-MnO_(2)(dMO)is an excellent cathode material for rechargeable aqueous zinc-ion batteries owing to its large interlayer distance(~0.7 nm),high capacity,and low cost;however,such cathodes suffer from struc...The layeredδ-MnO_(2)(dMO)is an excellent cathode material for rechargeable aqueous zinc-ion batteries owing to its large interlayer distance(~0.7 nm),high capacity,and low cost;however,such cathodes suffer from structural degradation during the long-term cycling process,leading to capacity fading.In this study,a Co-doped dMO composite with reduced graphene oxide(GC-dMO)is developed using a simple cost-effective hydrothermal method.The degree of disorderness increases owing to the hetero-atom doping and graphene oxide composites.It is demonstrated that layered dMO and GC-dMO undergo a structural transition from K-birnessite to the Zn-buserite phase upon the first discharge,which enhances the intercalation of Zn^(2+)ions,H_(2)O molecules in the layered structure.The GC-dMO cathode exhibits an excellent capacity of 302 mAh g^(-1)at a current density of 100 mAg^(-1)after 100 cycles as compared with the dMO cathode(159 mAhg^(-1)).The excellent electrochemical performance of the GC-dMO cathode owing to Co-doping and graphene oxide sheets enhances the interlayer gap and disorderness,and maintains structural stability,which facilitates the easy reverse intercalation and de-intercalation of Zn^(2+)ions and H_(2)O molecules.Therefore,GC-dMO is a promising cathode material for large-scale aqueous ZIBs.展开更多
The article raises the question of what to do with one of the main achievements of metal science in recent years—binary phase diagrams. These diagrams play a key role in the science of alloys and therefore their reli...The article raises the question of what to do with one of the main achievements of metal science in recent years—binary phase diagrams. These diagrams play a key role in the science of alloys and therefore their reliability must be complete. However, the discovery of the “ordering-separation” phase transition, which showed that in binary alloys at certain temperatures the sign of the chemical interatomic interaction changes (and, consequently, the microstructure changes), forces us to reconsider our ideas about those areas. Currently, these areas are designated on diagrams as areas of a “disordered solid solution.” This article proposes, using transmission electron microscopy, to study all the so-called solid solution regions, and apply the results obtained to the studied regions of the phase diagram.展开更多
Various solid state phase transformations exist in metastable β-type Ti alloys,which can be employed to optimize the mechanical properties.In this paper,synchrotron X-ray diffraction(SXRD)experiments were carried out...Various solid state phase transformations exist in metastable β-type Ti alloys,which can be employed to optimize the mechanical properties.In this paper,synchrotron X-ray diffraction(SXRD)experiments were carried out to study the phase transformations of a Ti36Nb5Zr alloy subjected to different thermomechanical treatments.Furthermore,the correlation between the phase constitutions and the mechanical properties was discussed.The a" texture formed,and high-density defects were introduced after cold rolling of the solution treated specimen,leading to the decrease in Young’s modulus and the increase in strength.The cold-rolled specimens were then annealed at temperatures from 423 to 773 K for 30 min.Both the Young’s modulus and strength increased with annealing temperatures increasing up to 673 K,which resulted from the precipitation of the ω and/or α phases.With further increase in annealing temperatures to 773 K,the β→α precipitation replaced the β→ω_(iso) phase transformation,and the density of defects decreased,leading to the decrease in both the Young’s modulus and strength.These results provide theoretical basis for the design biomedical Ti alloys with both low Young’s modulus and high strength.展开更多
文摘Phase transformation is one of the factors that would significantly influence the ability to resist cavitation erosion of stainless steels. Due to the specific properties of duplex stainless steel, the heat treatment would bring about significant phase transformations. In this paper, we have examined the previous studies on the phase transition of stainless steel, including the literature on the classification of stainless steel, spinodal decomposition, sigma phase transformation, and cavitation erosion of double stainless steel. Through these literature investigations, the destruction of cavitation erosion on duplex stainless steel can be clearly known, and the causes of failure of duplex stainless steel in seawater can be clarified, thus providing a theoretical basis for subsequent scientific research. And the review is about to help assess the possibility of using bulk heat treatment to improve the cavitation erosion (CE) behaviour of the duplex stainless steel 7MoPLUS.
基金Project(51275132)supported by the National Natural Science Foundation of China
文摘The hydrogen-induced microstructure evolution and phase transformations in Ti-6Al-4V alloy during heating and cooling were studied.The specimens were heated to 1273 K and subsequently cooled to room temperature.The hydrogen content is up to 0.8%(mass fraction).The hydrogen-induced dynamic phase transformations and the corresponding mechanisms were analyzed.When the hydrogen content increases,the β transus temperature significantly decreases and the magnitude decreases,and the volume fraction of β phase increases.During heating,the phase transformations in hydrogenated Ti-6Al-4V alloys can be divided into three stages,and the phase transformation order is δ→α+H2↑?δ+α′→βH?α′→αH+βH?αH→α+H2↑?α→β?βH→β+H2↑.In addition,the relationship among hydrogenation and Ms and Mf of α′ martensite were determined.
文摘Both furnace cooled and as-cast eutectoid Zn-Al alloys were investigated under external tensile stress at 100℃. It was observed that the external tensile stress caused decomposition of two metastable phases η'T and η'S which derived from both original state of the alloy, and a phase transformation, αf +ε→T' +η, in both furnace cooled and as-cast eutectoid Zn-Al alloys. Also spheroidized structure formed partially during tensile testing. Superplasticity of the alloy has been discussed correlating with the phase transformations and microstructural changes.
文摘The phase transformations in Ti-10V-2Fe-3AI alloy during aging have been studied by means of X-ray diffraction and TEM techniques.The morphology and distribution of precipi- tated phases were examined.The lattice parameters of α and β phases as a function of the ag- ing time is obtained,the hardness variation of the specimens related to the aging temperature and time has been given as well.
基金the Foundation of Key Laboratory of National Defense Technologythe National Key Laboratory for Nuclear Fuel and Materials (No. 00JS85.9.1GX0101)the Science Foundation of Guangxi Province, China (Nos. 0448022 and 0728060)
文摘Intermetallics and phase transformations of the zirconium-based alloy, Zr-1.0Sn-0.3Nb-0.3Fe-0.1Cr, were investigated by conventional X-ray diffraction (XRD), differential scanning calorimetry (DSC), and dilation measurement. Three types of precipitates, namely, (ZrNb)2Fe, Zr(CrFe)2, and Zr3Fe, were detected by XRD. The cubic Ti2Ni-type (ZrNb)2Fe was found to be the main precipitate in the alloy, and it was proposed to dissolve at 861℃, whereas Zr3Fe dissolved at 780℃ and Zr(CrFe)2 at 814℃. No precipitates were observed at a temperature higher than 900℃. The transformation-start temperature of α-Zr → β-Zr was reconfirmed to be 780℃, and the end temperature of α-Zr →βZr was determined to be 955℃. The dilation result also revealed that the martensitic transformation-start temperature, Ms, and the finish temperature, Mf, of this alloy were 741℃ and 645℃, respectively.
基金Projects(51901248,51828102)supported by the National Natural Science Foundation of ChinaProject(2018JJ3649)supported by the Natural Science Foundation of Hunan Province,ChinaProject(2019CX026)supported by the Innovation-driven Plan in Central South University,China。
文摘The effects of tensile temperatures ranging from 100 K to 900 K on the phase transition of hexagonal close-packed(HCP)zirconium were investigated by molecular dynamics simulations,which were combined with experimental observation under high resolution transmission electron microscopy.The results show that externally applied loading first induced the HCP to body-centered cubic(BCC)phase transition in the Pitsch-Schrader(PS)orientation relationship(OR).Then,the face-centered cubic(FCC)structure transformed from the BCC phase in the Bain path.However,the HCP-to-BCC transition was incomplete at 100 K and 300 K,resulting in a prismatic-type OR between the FCC and original HCP phase.Additionally,at the temperature ranging from 100 K to 600 K,the inverse BCC-to-HCP transition occurred locally following other variants of the PS OR,resulting in a basal-type relation between the newly generated HCP and FCC phases.A higher tensile temperature promoted the amount of FCC phase transforming into the BCC phase when the strain exceeded 45%.Besides,the crystal stretched at lower temperatures exhibits relatively higher strength but by the compromise of plasticity.This study reveals the deformation mechanisms in HCP-Zr at different temperatures,which may provide a better understanding of the deformation mechanism of zirconium alloys under different application environments.
文摘The microstructural evolution and phase transformations of mechanically stirred non-dendritic ZA27 alloy during partial remelting were studied by using scanning electron microscopy and X-ray diffraction technique.The partial remelting temperature was 460℃ and lower than the stirring temperature of 465℃.So the microstructure with globular grains needed for semi-solid forming can not be obtained and the starting primary non-dendritic grains change in turn to connect non-dendritic grains, long chain-like structures and finally to coarsen connect grains.However,the small near-equiaxed grains between the primary non-dendritic grains are evolved into small globular grains gradually,some of which are also attached to the primary non-dendritic grains during the subsequent heating.The X-ray diffraction results show that a series of phase transformations, α+η+ε→β,η+β→L,β→α′+L,α+η+ε→α′ and α′→L, occur successively during this process.The main reason why the starting primary non-dendritic grains do not separate into the needed independent globular grains is that the reactions of η+β→L and α′→L do not occur or occurr incompletely in the layers used to connect the primary non-dendritic grains.
文摘The effects of shock loading on the morphology,grain growth during heating and phase transforma- tion of ZrO_2 have been investigated.It is shown that shock loading may be efficiently used to modify submicron ceramic powders with nanocrystalline structure.After shock loading,the critical diameter of ZrO_2 particles transformed from tetragonal to monoclinic decreased due to stored strain energy. Annealing of powders resulted in reversible transformation to the tetragonal without considerable grain growth up to 1200℃.
文摘The effect of prior microstructure on the kinetics of the α- β phase transformation in Zr-1.14 wt%Cr 0.08 wt%Fe alloy was studied. Specimens of different metallurgical histories and hence microstructures were prepared. Thermoelectric power (TEP) measurements and optical metallographt wereused to examine the transformations produced in these three kinds of specimens when they were reheated totemperatures 800~100℃ at different heating rates (slow and fast). The results indicate that the kinetics ofthe α-βphase transformation is strongly influenced by the metallurgical history of specimens. The presenceof nonequilibnum structures accelerates the phase transformation in the alloy and decreases the x-β transfor-mation temperature from 950℃ to 870℃. The influence of experimental conditions on the transformationkinetics is more complicated than that of metallurgical history. For an heated and as-received specimens, theα-βtransformation kinetics of the fast-heated specimens is slower than for the slow-heated specimens. How-ever. in the quenched specimens, the transformation kinetics of slow-heated specimens is greater than in fastheated specimens. This behaviour may be related to the size and shape of the Zr(CrFe)_2 precipitates andthe homogenization of the matrix.
基金This work was financially supported by the National Natural Science Foundation of China(Grant Nos.:11504149,51661020)thc Natural Scicnce Toundation of Gansu Province of China(Grant No:18JR3RA147).
文摘A new continuous multi-phase transformation field model was established for liquid-solid-eutectoid transformation. Taking Fe-C alloy as an example, the model was used to simulate the evolution of the micro-morphology of the liquid-solid phase transition, and the effects of temperature, solute and free energy on the nucleation of pearlite after the liquid-solid phase transition were analyzed. The micro-morphology of pearlite was simulated. The simulation results show that the austenite structure has hereditary effect on the pearlite, the morphology of pearlite structure was similar to that of the parent austenite. The eutectoid structure at the front of pearlite grows toward the interior of austenite grains in a bifurcation manner and in the spherical coronal shape. In addition, the growth rate of pearlite was related to the shape of concave-convex interface at the nucleation site, and the growth rate at the convex interface was faster than that at the concave interface.
基金the National Natural Science Foundation of China(Nos.52101026 and 52222507)the Natural Science Foundation of Zhejiang Province(No.LQ20E010004)+2 种基金the“Pioneer”and“Leading Goose”R&D Program of Zhejiang(No.2022C01017)the National Natural Science Foundation of China(52101108)the Ningbo 3315 Innovation Team(Nos.2019A-18-C and 2020A-03-C)is gratefully acknowledged.
文摘Rare-earth(RE)elements,known as“industrial vitamins”,have permeated modern lives,especially in high-tech applications.Although the RE elements possess close chemical similarities and have been treated as“one element”in the periodic table,their characteristics differ from each other.The RE microalloying effect is the crux to ameliorate the physicomechanical and thermochemical properties of materials,thereby the study of RE-related phase diagrams becomes indispensable to the design and optimization of RE-containing materials.However,in reality,the knowledge base in this area is considerably scarce compared with that of other commonly-used elements.In this work,the phase equilibria,phase diagrams,phase transformations,and some recent examples of RE-containing materials design are summarized,with which one can predict the RE solubilities,the RE precipitates,as well as the corresponding service behaviors.The attainment of enhanced materials’properties suggests that the thermodynamic rules extracted from the phase diagrams could serve as fundamental criteria for the successful development of novel RE-containing materials.
基金supported by the National Key Research and Development Program of China(2021YFB3501002)State Key Program of National Natural Science Foundation of China(5203405)+3 种基金National Natural Science Foundation of China(51974220,52104383)National Key Research and Development Program of China(2021YFB3700902)Key Research and Development Program of Shaanxi Province(2020ZDLGY13-06,2017ZDXM-GY-037)Shaanxi Province National Science Fund for Distinguished Young Scholars(2022JC-24)。
文摘A large-scale fine-grained Mg-Gd-Y-Zn-Zr alloy plate with high strength and ductility was successfully prepared by multi-pass friction stir processing(MFSP)technology in this work.The structure of grains and long period stacking ordered(LPSO)phase were characterized,and the mechanical properties uniformity was investigated.Moreover,a quantitative relationship between the microstructure and tensile yield strength was established.The results showed that the grains in the processed zone(PZ)and interfacial zone(IZ)were refined from 50μm to 3μm and 4μm,respectively,and numerous original LPSO phases were broken.In IZ,some block-shaped 18R LPSO phases were transformed into needle-like 14H LPSO phases due to stacking faults and the short-range diffusion of solute atoms.The severe shear deformation in the form of kinetic energy caused profuse stacking fault to be generated and move rapidly,greatly increasing the transformation rate of LPSO phase.After MFSP,the ultimate tensile strength,yield strength and elongation to failure of the large-scale plate were 367 MPa,305 MPa and 18.0% respectively.Grain refinement and LPSO phase strengthening were the major strengthening mechanisms for the MFSP sample.In particularly,the strength of IZ was comparable to that of PZ because the strength contribution of the 14H LPSO phase offsets the lack of grain refinement strengthening in IZ.This result opposes the widely accepted notion that IZ is a weak region in MFSP-prepared large-scale fine-grained plate.
基金This work was supported by the National Natural Science Foundation of China(Grant No.52101059)the Shenyang National Laboratory for Materials Science(Grant No.L2019F48).
文摘Effects of solute rare earth(RE)on continuous cooling transformation of a low-alloy Cr–Mo–V bainitic steel are investigated in detail by dilatometry,optical microscopy(OM),scanning electron microscopy(SEM)and transmission electron microscopy(TEM).Microstructures appeared in thermal dilatometric samples of both low-alloy Cr–Mo–V(RE)steels are composed of quasi-polygonal ferrite(QPF),degenerate pearlite(DP),granular bainite(GB),lath bainite(LB),and martensite(M)depending on cooling rate.When cooling rate is lower than 2°C/s,the addition of RE suppresses QPF transformation,and thereby inducing a broader transformation region of GB.When cooling rate ranges from 2 to 100°C/s,the addition of RE decreases the start temperature of bainitic transformation distinctly,which results in finer bainitic ferrite grain size and higher dislocation density.The addition of RE can enhance the hardness of the low alloy Cr–Mo–V steel by affecting the aforementioned diffusional and/or partly displacive transformation.However,when cooling rate increases up to 150°C/s,two steels have the same hardness value of about 435 HV due to only martensite obtained by displacive transformation.
基金financially supported by the National Key Research and Development Program of China (No.2023YFC2909000)the National Natural Science Foundation of China(No.52174240)the Open Foundation of State Key Laboratory of Mineral Processing (No.BGRIMM-KJSKL-2023-15)。
文摘The mechanism involved in the phase transformation process of pyrolusite (MnO_(2)) during roasting in a reducing atmosphere was systematically elucidated in this study,with the aim of effectively using low-grade complex manganese ore resources.According to single-factor experiment results,the roasted product with a divalent manganese (Mn^(2+)) distribution rate of 95.30% was obtained at a roasting time of 25 min,a roasting temperature of 700℃,a CO concentration of 20at%,and a total gas volume of 500 mL·min^(-1),in which the manganese was mainly in the form of manganosite (MnO).Scanning electron microscopy and Brunauer–Emmett–Teller theory demonstrated the microstructural evolution of the roasted product and the gradual reduction in the pyrolusite ore from the surface to the core Thermodynamic calculations,X-ray photoelectron spectroscopy,and X-ray diffractometry analyses determined that the phase transformation of pyrolusite followed the order of MnO_(2)→Mn_(2)O_(3)→Mn_(3)O_(4)→MnO phase by phase,and the reduction of manganese oxides in each valence state proceeded simultaneously.
基金supported by the National Natural Science Foundation of China (Grant No.12072331)the Science Challenge Project (Grant No.TZ2018001)+2 种基金the Japan Society for the Promotion of Science (Grant Nos.17H04820 and 21H01677)the Foundation of the United Laboratory of High-Pressure Physics and Earthquake Scienceperformed under the approval of the Photon Factory Program Advisory Committee (Proposal Nos.2016S2-006 and 2020G680)。
文摘A time-resolved x-ray diffraction technique is employed to monitor the structural transformation of laser-shocked bismuth.Results reveal a retarded transformation from the shock-induced Bi-Ⅴphase to a metastable Bi-Ⅳphase during the shock release,instead of the thermodynamically stable Bi-Ⅲphase.The emergence of the metastable Bi-Ⅳphase is understood by the competitive interplay between two transformation pathways towards the Bi-Ⅳand Bi-Ⅲ,respectively.The former is more rapid than the latter because the Bi-Ⅴto B-Ⅳtransformation is driven by interaction between the closest atoms while the Bi-Ⅴto B-Ⅲtransformation requires interaction between the second-closest atoms.The nucleation time for the Bi-Ⅴto Bi-Ⅳtransformation is determined to be 5.1±0.9 ns according to a classical nucleation model.This observation demonstrates the importance of the formation of the transient metastable phases,which can change the phase transformation pathway in a dynamic process.
基金supported by the National Key Research and Development Program of China(No.2023YFC 2909000)the National Natural Science Foundation of China(No.52174240)+4 种基金the Major Science and Technology Projects of Xinjiang Uygur Autonomous Region(No.2023A03003-2)the XingLiao Talent Program of Liaoning Province(No.XLYC2203167)the Excellent Youth Fund Project of Liaoning Natural Science Foundation(No.2023JH3/10200010)the Fundamental Research Funds for the Central Universities(No.N23011026)the Open Foundation of State Key Laboratory of Mineral Processing(No.BGRIMM-KJSKL-2023-15).
文摘Pyrolusite comprises the foremost manganese oxides and is a major source of manganese production.An innovative hydrogenbased mineral phase transformation technology to pyrolusite was proposed,where a 96.44%distribution rate of divalent manganese(Mn^(2+))was observed at an optimal roasting temperature of 650℃,a roasting time of 25 min,and an H2 concentration of 20vol%;under these conditions.The manganese predominantly existed in the form of manganosite.This study investigated the generation mechanism of manganosite based on the reduction kinetics,phase transformation,and structural evolution of pyrolusite and revealed that high temperature improved the distribution rate,and the optimal kinetic model for the reaction was the random nucleation and growth model(reaction order,n=3/2)with an activation energy(E_(a))of 24.119 kJ·mol^(−1).Throughout the mineral phase transformation,manganese oxide from the outer layer of particles moves inward to the core.In addition,pyrolusite follows the reduction sequence of MnO_(2)→Mn_(2)O_(3)→Mn_(3)O_(4)→MnO,and the reduction of manganese oxides in each valence state simultaneously proceeds.These findings provide significant insight into the efficient and clean utilization of pyrolusite.
基金financially supported by the National Natural Science Foundation of China(Nos.U23A20540,52371127)the Science and Technology Innovation Program of Hunan Province,China(No.2022RC3035)the Fundamental Research Funds for the Central Universities of Central South University,China(No.2024ZZTS0077)。
文摘Due to a series of exceptional properties,titanium and titanium alloys have received extensive attention in recent years.Different from other alloy systems,there are two allotropes and a sequence of metastable phases in titanium alloys.By summarizing the recent investigations,the phase transformation processes corresponding to the common phases and also some less reported phases are reviewed.For the phase transformation only involvingαandβphases,it can be divided intoβ→αtransformation and a reverse transformation.The former one has been demonstrated from the orientation relationship betweenαandβphases and the regulation ofαmorphology.For the latter transformation,the role of the stress has been discussed.In terms of the metastable phases,the mechanisms of phase formation and their effects on microstructure and mechanical properties have been discussed.Finally,some suggestions about the development of titanium alloys have been proposed.
基金supported by the National Research Foundation of Korea(NRF)grants funded by the Korean Government(NRF-2021R1A4A1030318,NRF-2022R1C1C1011386,NRF-2020M3H4A1A03084258)supported by the"Regional Innovation Strategy(RIS)"through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(MOE)(2021RIS-003)
文摘The layeredδ-MnO_(2)(dMO)is an excellent cathode material for rechargeable aqueous zinc-ion batteries owing to its large interlayer distance(~0.7 nm),high capacity,and low cost;however,such cathodes suffer from structural degradation during the long-term cycling process,leading to capacity fading.In this study,a Co-doped dMO composite with reduced graphene oxide(GC-dMO)is developed using a simple cost-effective hydrothermal method.The degree of disorderness increases owing to the hetero-atom doping and graphene oxide composites.It is demonstrated that layered dMO and GC-dMO undergo a structural transition from K-birnessite to the Zn-buserite phase upon the first discharge,which enhances the intercalation of Zn^(2+)ions,H_(2)O molecules in the layered structure.The GC-dMO cathode exhibits an excellent capacity of 302 mAh g^(-1)at a current density of 100 mAg^(-1)after 100 cycles as compared with the dMO cathode(159 mAhg^(-1)).The excellent electrochemical performance of the GC-dMO cathode owing to Co-doping and graphene oxide sheets enhances the interlayer gap and disorderness,and maintains structural stability,which facilitates the easy reverse intercalation and de-intercalation of Zn^(2+)ions and H_(2)O molecules.Therefore,GC-dMO is a promising cathode material for large-scale aqueous ZIBs.
文摘The article raises the question of what to do with one of the main achievements of metal science in recent years—binary phase diagrams. These diagrams play a key role in the science of alloys and therefore their reliability must be complete. However, the discovery of the “ordering-separation” phase transition, which showed that in binary alloys at certain temperatures the sign of the chemical interatomic interaction changes (and, consequently, the microstructure changes), forces us to reconsider our ideas about those areas. Currently, these areas are designated on diagrams as areas of a “disordered solid solution.” This article proposes, using transmission electron microscopy, to study all the so-called solid solution regions, and apply the results obtained to the studied regions of the phase diagram.
基金This work was financially supported by the Fundamental Research Funds for the Central Universities(No.2017QNA04)Qing-Kun Meng thanks Prof.Yu-Chen Karen Chen-Wiegart at Stony Brook University and Dr.Jian-Ming Bai,Dr.Hui Zhong and Dr.Sanjit Ghose at National Synchrotron Light Source II for their assistance in the synchrotron experiments.This research used 28-ID-2(XPD)beamline of the National Synchrotron Light Source II,a U.S.Department of Energy(DOE)Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract No.DE-SC0012704.
文摘Various solid state phase transformations exist in metastable β-type Ti alloys,which can be employed to optimize the mechanical properties.In this paper,synchrotron X-ray diffraction(SXRD)experiments were carried out to study the phase transformations of a Ti36Nb5Zr alloy subjected to different thermomechanical treatments.Furthermore,the correlation between the phase constitutions and the mechanical properties was discussed.The a" texture formed,and high-density defects were introduced after cold rolling of the solution treated specimen,leading to the decrease in Young’s modulus and the increase in strength.The cold-rolled specimens were then annealed at temperatures from 423 to 773 K for 30 min.Both the Young’s modulus and strength increased with annealing temperatures increasing up to 673 K,which resulted from the precipitation of the ω and/or α phases.With further increase in annealing temperatures to 773 K,the β→α precipitation replaced the β→ω_(iso) phase transformation,and the density of defects decreased,leading to the decrease in both the Young’s modulus and strength.These results provide theoretical basis for the design biomedical Ti alloys with both low Young’s modulus and high strength.