The technique for preparing phenol formaldehyde resin from phenolated wood (PWF) and its characters were studied and analyzed. Poplar (Populus spp.) wood meal was liquefied by phenol in the presence of sulfuric acid a...The technique for preparing phenol formaldehyde resin from phenolated wood (PWF) and its characters were studied and analyzed. Poplar (Populus spp.) wood meal was liquefied by phenol in the presence of sulfuric acid as a catalyst. After the liquefied products were cooled, alkaline catalyst and formaldehyde were added. The mixture was kept at (60?) C for 1h and then was heated to (85?) C for 1h. The influence of molar ratio of formaldehyde to phenol (F/P) was investigated. The results showed when the molar ratio of formaldehyde to phenol was over 1.8, the PWF adhesives had high bond quality, bond durability and extremely low aldehydes emissions.展开更多
Nanosized tungsten carbide was synthesized from phenol formaldehyde resin (PF) coated tungsten precursors. The process has three steps in which nanosized tungsten particles were first coated with PF, then the precur...Nanosized tungsten carbide was synthesized from phenol formaldehyde resin (PF) coated tungsten precursors. The process has three steps in which nanosized tungsten particles were first coated with PF, then the precursors were carburized at 950℃, and finally the carburized powders were treated in flowing wet hydrogen atmosphere at 940℃ to remove the uncombined carbon. The obtained powders were characterized using X-ray diffraction analysis (XRD), field-emission scanning electron microscopy (FESEM), small angle X-ray scattering (SAXS), and combustion-gas-volume method. The results indicated that single-phase WC could be synthesized using excessive PF as carburizer at a much lower temperature compared with using mixed carbon black. After wet hydrogen treating, the mean size of the obtained WC particles was 94.5 nm and the total carbon content was 6.18 wt.%.展开更多
Pyrolysis of phenol formaldehyde resin has been investigated by Pyrolysis Gas Chromatography-Mass Spectroscopy at the different temperatures from 500℃ to 750℃. Its composition of pyrclysates has been analyzed. Sever...Pyrolysis of phenol formaldehyde resin has been investigated by Pyrolysis Gas Chromatography-Mass Spectroscopy at the different temperatures from 500℃ to 750℃. Its composition of pyrclysates has been analyzed. Several compounds, especially benzene, toluene, p-xylene could only be formed above 500-550℃. Howerver, peak intensities for some pbend derivatives were decreased at the higher temperature. During pyrolysis, for thermo-setting phenol formaldehyde resins, polymeric chain scissions take place as a successive removal of the monomer units from the polymeric chain. The chain scissions are followed by secondary reactions, which leads to a variety of compounds. Addition reactions can also take place among the double-bond compounds during pyrolysis.展开更多
The study characterized the curing behaviors of phenol formaldehyde(PF)resin under different vacuum degrees and explored the properties of 9-ply plywood panels hot-pressed under both vacuum and atmospheric conditions....The study characterized the curing behaviors of phenol formaldehyde(PF)resin under different vacuum degrees and explored the properties of 9-ply plywood panels hot-pressed under both vacuum and atmospheric conditions.The changes in core temperature and moisture content of the plywood mats during hot pressing were investigated as well.It was found that the gel times and gel temperatures of PF resin decreased with the increase of vacuum degree using a self-made device.FTIR spectra indicated the degree of polycondensation of hydroxymethyl gradu-ally increased with the increase in temperature.It was also observed that a higher degree of vacuum led to a slower polycondensation reaction rate of PF resin.During different hot-pressing processes,the bonding strengths in the innermost and uppermost gluelines of the vacuum hot-pressed plywood panels were up to 30%–50%higher than their counterparts of conventional hot-pressed products.A less difference in the bonding strengths between these two gluelines was also observed for vacuum hot-pressed products.In addition,the core of vacuum hot-pressed plywood was found to have a greater heating rate and higher temperature at thefinal stage of hot pressing,which was beneficial to cure the PF resin.The results from this study indicate a promising potential of introducing a vacuum during hot pressing to improve the quality and productivity of plywood products and provide a basis for adopting vacuum to hot press wood composites.展开更多
In order to reduce the cost and to improve the low temperature bonding strength of phenol formaldehyde resin( PF),the lignin modified phenol formaldehyde resin( LPF) was synthesized using calcium lignosulfonate as...In order to reduce the cost and to improve the low temperature bonding strength of phenol formaldehyde resin( PF),the lignin modified phenol formaldehyde resin( LPF) was synthesized using calcium lignosulfonate as a partial replacement of phenol,and sodium hydroxide as catalyzer. Then the magnesia carbon bricks were prepared using the LPF as binder. Different process conditions of LPFs such as calcium lignosulfonate additions( 10%,20%,30%,40% and 50%,in mass,the same hereinafter),catalyzer additions( extra added,1%,2%,3%,4% and 5%) and reaction times( 1,1. 5,2,2. 5 and 3 h) were investigated. Effects of prepared LPFs on properties of magnesia carbon bricks( baked at 200 ℃ for 24 h) were researched in order to modify the synthesizing conditions of LPFs. Cold physical properties and hot modulus of rupture of magnesia carbon bricks bonded by LPF and by traditional PF after baked at 200 ℃ for 24 h and fired at 1 200 ℃ for 3 h were compared,respectively. The results show that the optimal synthesizing conditions of LPF for preparing magnesia carbon bricks are 30% calcium lignosulfonate,1% catalyzer,and 2 h reaction time. The magnesia carbon bricks bonded by the optimal LPF achieve:( 1) the bulk densities 2. 84 g · cm- 3and 2. 82g·cm- 3,apparent porosities 9. 6% and 14. 6%,moduli of rupture 17. 8 MPa and 6. 4 MPa,crushing strengths72. 3 MPa and 48. 7 MPa,after baked at 200 ℃ and1 200 ℃,respectively;( 2) the hot modulus of rupture7. 3 MPa after fired at 1 400 ℃. The above properties are better than those of the magnesia carbon brick bonded by PF.展开更多
Alkali lignin was processed by plasma and then used in modification of phenol formaldehyde resin in this study.Chemical structural changes of lignin which was processed by plasma as well as bonding strength,tensile pr...Alkali lignin was processed by plasma and then used in modification of phenol formaldehyde resin in this study.Chemical structural changes of lignin which was processed by plasma as well as bonding strength,tensile property,curing performance and thermal property of the prepared phenol formaldehyde resin which was modified by the plasma processed lignin were analyzed.Results demonstrated that:(1)Alkali lignin was degraded after the plasma processing.The original groups were destroyed,and the aromatic rings collected abundant free radicals and oxygen-containing functional groups like hydroxyls,carbonyls,carboxyls and acyls were introduced into increase the reaction activity of lignin significantly.(2)The introduction of alkali lignin decreased the free formaldehyde content and increased bonding strength and toughness of the prepared phenol formaldehyde resin,especially after the introduction of lignin treated with plasma.(3)The introduction of alkali lignin led to high curing temperature for the prepared phenol formaldehyde resin,but that was reduced by the plasma processed alkali lignin.(4)The introduction of alkali lignin could also increase thermal stability of phenol formaldehyde resin,but that was modified by plasma processed alkali lignin was better than the unprocessed lignin.Based on the results,the plasma processed lignin was used to modify phenol formaldehyde resin,which could increase the strength and toughness of phenol formaldehyde resin significantly.展开更多
To study the synthesis of 3,4-dihydro-2H-3-phenyl-1,3-benzoxazine(benzoxazine),the reaction paths of phenol,aniline and formaldehyde were investigated by analyzing the synthesis crude products.With the aid of high-p...To study the synthesis of 3,4-dihydro-2H-3-phenyl-1,3-benzoxazine(benzoxazine),the reaction paths of phenol,aniline and formaldehyde were investigated by analyzing the synthesis crude products.With the aid of high-performance liquid chromatography(HPLC),chromatographic column and preparative HPLC,seven compounds originated from the crude products were obtained and their chemical structures were elucidated.Possible reaction paths are proposed based on these compounds.Results show that Nhydroxymethyl aniline(HMA) derived from the reaction of formaldehyde and aniline is probably the key intermediate during the reaction.HMA can react with itself or other reactants to form other intermediates,such as 1,3,5-triphenyl-1,3,5-triazinane and 2-((phenylamino)methyl)phenol,and further form benzoxazine and byproducts.展开更多
Effect of retanning on the thermal stability of leather is eliciting increasing attention. However, the relationship between the hydrophilicity of retanning agents and the heat resistance of leather and the correspond...Effect of retanning on the thermal stability of leather is eliciting increasing attention. However, the relationship between the hydrophilicity of retanning agents and the heat resistance of leather and the corresponding mechanism remain unclear. Herein, phenolic formaldehyde syntans (PFSs) were selected as models to explore the effect of the hydrophilicity of retanning agents on the thermal stability of retanned leather. The thermal stability of leather was closely correlated to the hydrophilic group content (sulfonation degree) of PFSs. As the sulfonation degree increased, the water absorption rate of PFSs and their retanned leathers decreased, whereas the thermal stability of leather increased. Molecular dynamics simulation results proved that the introduction of PFSs could reduce the binding ability of collagen molecules with water and thus decreased the water molecules around the PFS-treated collagen. These results may provide guidance for the tanners to select retanning agents reasonably to improve the thermal stability of leather.展开更多
The rich porous structure,high surface area and surface doping make nitrogen doping mesoporous carbon materials(N-MPC)attractive in various areas,including adsorption separation,electrochemical energy storage,catalysi...The rich porous structure,high surface area and surface doping make nitrogen doping mesoporous carbon materials(N-MPC)attractive in various areas,including adsorption separation,electrochemical energy storage,catalysis and other fields.Herein,polyvinylpyrrolidone(PVP)is introduced into the polymerization process of assembly of phenol/formaldehyde(PF)resin by means of hydrogen bonds and electrostatic interaction,which not only leads to the formation of uniform mesopores,but also leads to the increase of specific surface area and nitrogen doping.The amount of PVP and annealing temperature has no obvious effect on morphology,but subsequently has effect on the specific surface area and pore volume.When appropriate PVP dosage and annealing temperature are adopted,the obtained N-MPC shows abundant mesoporous,high surface area and suitable nitrogen doping.As electrode materials in supercapacitor,the N-MPC shows good performance with high capacitance good stability and rate performance,presenting its excellent promising in energy storage.展开更多
文摘The technique for preparing phenol formaldehyde resin from phenolated wood (PWF) and its characters were studied and analyzed. Poplar (Populus spp.) wood meal was liquefied by phenol in the presence of sulfuric acid as a catalyst. After the liquefied products were cooled, alkaline catalyst and formaldehyde were added. The mixture was kept at (60?) C for 1h and then was heated to (85?) C for 1h. The influence of molar ratio of formaldehyde to phenol (F/P) was investigated. The results showed when the molar ratio of formaldehyde to phenol was over 1.8, the PWF adhesives had high bond quality, bond durability and extremely low aldehydes emissions.
基金This Work was financially supported by Beijing Municipal Science & Technology Commission(No.2052015).
文摘Nanosized tungsten carbide was synthesized from phenol formaldehyde resin (PF) coated tungsten precursors. The process has three steps in which nanosized tungsten particles were first coated with PF, then the precursors were carburized at 950℃, and finally the carburized powders were treated in flowing wet hydrogen atmosphere at 940℃ to remove the uncombined carbon. The obtained powders were characterized using X-ray diffraction analysis (XRD), field-emission scanning electron microscopy (FESEM), small angle X-ray scattering (SAXS), and combustion-gas-volume method. The results indicated that single-phase WC could be synthesized using excessive PF as carburizer at a much lower temperature compared with using mixed carbon black. After wet hydrogen treating, the mean size of the obtained WC particles was 94.5 nm and the total carbon content was 6.18 wt.%.
文摘Pyrolysis of phenol formaldehyde resin has been investigated by Pyrolysis Gas Chromatography-Mass Spectroscopy at the different temperatures from 500℃ to 750℃. Its composition of pyrclysates has been analyzed. Several compounds, especially benzene, toluene, p-xylene could only be formed above 500-550℃. Howerver, peak intensities for some pbend derivatives were decreased at the higher temperature. During pyrolysis, for thermo-setting phenol formaldehyde resins, polymeric chain scissions take place as a successive removal of the monomer units from the polymeric chain. The chain scissions are followed by secondary reactions, which leads to a variety of compounds. Addition reactions can also take place among the double-bond compounds during pyrolysis.
文摘The study characterized the curing behaviors of phenol formaldehyde(PF)resin under different vacuum degrees and explored the properties of 9-ply plywood panels hot-pressed under both vacuum and atmospheric conditions.The changes in core temperature and moisture content of the plywood mats during hot pressing were investigated as well.It was found that the gel times and gel temperatures of PF resin decreased with the increase of vacuum degree using a self-made device.FTIR spectra indicated the degree of polycondensation of hydroxymethyl gradu-ally increased with the increase in temperature.It was also observed that a higher degree of vacuum led to a slower polycondensation reaction rate of PF resin.During different hot-pressing processes,the bonding strengths in the innermost and uppermost gluelines of the vacuum hot-pressed plywood panels were up to 30%–50%higher than their counterparts of conventional hot-pressed products.A less difference in the bonding strengths between these two gluelines was also observed for vacuum hot-pressed products.In addition,the core of vacuum hot-pressed plywood was found to have a greater heating rate and higher temperature at thefinal stage of hot pressing,which was beneficial to cure the PF resin.The results from this study indicate a promising potential of introducing a vacuum during hot pressing to improve the quality and productivity of plywood products and provide a basis for adopting vacuum to hot press wood composites.
基金New Century Excellent Talents Program of Ministry of Education ( NCET - 09 - 0137 )The open foundation of the State Key Laboratory of Refractories and Metallurgy ( 2014QN17 )
文摘In order to reduce the cost and to improve the low temperature bonding strength of phenol formaldehyde resin( PF),the lignin modified phenol formaldehyde resin( LPF) was synthesized using calcium lignosulfonate as a partial replacement of phenol,and sodium hydroxide as catalyzer. Then the magnesia carbon bricks were prepared using the LPF as binder. Different process conditions of LPFs such as calcium lignosulfonate additions( 10%,20%,30%,40% and 50%,in mass,the same hereinafter),catalyzer additions( extra added,1%,2%,3%,4% and 5%) and reaction times( 1,1. 5,2,2. 5 and 3 h) were investigated. Effects of prepared LPFs on properties of magnesia carbon bricks( baked at 200 ℃ for 24 h) were researched in order to modify the synthesizing conditions of LPFs. Cold physical properties and hot modulus of rupture of magnesia carbon bricks bonded by LPF and by traditional PF after baked at 200 ℃ for 24 h and fired at 1 200 ℃ for 3 h were compared,respectively. The results show that the optimal synthesizing conditions of LPF for preparing magnesia carbon bricks are 30% calcium lignosulfonate,1% catalyzer,and 2 h reaction time. The magnesia carbon bricks bonded by the optimal LPF achieve:( 1) the bulk densities 2. 84 g · cm- 3and 2. 82g·cm- 3,apparent porosities 9. 6% and 14. 6%,moduli of rupture 17. 8 MPa and 6. 4 MPa,crushing strengths72. 3 MPa and 48. 7 MPa,after baked at 200 ℃ and1 200 ℃,respectively;( 2) the hot modulus of rupture7. 3 MPa after fired at 1 400 ℃. The above properties are better than those of the magnesia carbon brick bonded by PF.
基金supported by National Natural Science Foundation of China(No.31800481)Yunnan Fundamental Research Key Projects(No.2019FA012)+2 种基金Science-Technology Support Foundation of Guizhou Province of China(Nos.[2019]2308,[2020]1Y125)Forestry Department Foundation of Guizhou Province of China(No.[2018]13)Cultivation Project of Guizhou University of China(No.[2019]37).
文摘Alkali lignin was processed by plasma and then used in modification of phenol formaldehyde resin in this study.Chemical structural changes of lignin which was processed by plasma as well as bonding strength,tensile property,curing performance and thermal property of the prepared phenol formaldehyde resin which was modified by the plasma processed lignin were analyzed.Results demonstrated that:(1)Alkali lignin was degraded after the plasma processing.The original groups were destroyed,and the aromatic rings collected abundant free radicals and oxygen-containing functional groups like hydroxyls,carbonyls,carboxyls and acyls were introduced into increase the reaction activity of lignin significantly.(2)The introduction of alkali lignin decreased the free formaldehyde content and increased bonding strength and toughness of the prepared phenol formaldehyde resin,especially after the introduction of lignin treated with plasma.(3)The introduction of alkali lignin led to high curing temperature for the prepared phenol formaldehyde resin,but that was reduced by the plasma processed alkali lignin.(4)The introduction of alkali lignin could also increase thermal stability of phenol formaldehyde resin,but that was modified by plasma processed alkali lignin was better than the unprocessed lignin.Based on the results,the plasma processed lignin was used to modify phenol formaldehyde resin,which could increase the strength and toughness of phenol formaldehyde resin significantly.
基金supported by the National Natural Science Foundation of China (No.21174093)
文摘To study the synthesis of 3,4-dihydro-2H-3-phenyl-1,3-benzoxazine(benzoxazine),the reaction paths of phenol,aniline and formaldehyde were investigated by analyzing the synthesis crude products.With the aid of high-performance liquid chromatography(HPLC),chromatographic column and preparative HPLC,seven compounds originated from the crude products were obtained and their chemical structures were elucidated.Possible reaction paths are proposed based on these compounds.Results show that Nhydroxymethyl aniline(HMA) derived from the reaction of formaldehyde and aniline is probably the key intermediate during the reaction.HMA can react with itself or other reactants to form other intermediates,such as 1,3,5-triphenyl-1,3,5-triazinane and 2-((phenylamino)methyl)phenol,and further form benzoxazine and byproducts.
基金the National Natural Science Foundation of China(21978176).
文摘Effect of retanning on the thermal stability of leather is eliciting increasing attention. However, the relationship between the hydrophilicity of retanning agents and the heat resistance of leather and the corresponding mechanism remain unclear. Herein, phenolic formaldehyde syntans (PFSs) were selected as models to explore the effect of the hydrophilicity of retanning agents on the thermal stability of retanned leather. The thermal stability of leather was closely correlated to the hydrophilic group content (sulfonation degree) of PFSs. As the sulfonation degree increased, the water absorption rate of PFSs and their retanned leathers decreased, whereas the thermal stability of leather increased. Molecular dynamics simulation results proved that the introduction of PFSs could reduce the binding ability of collagen molecules with water and thus decreased the water molecules around the PFS-treated collagen. These results may provide guidance for the tanners to select retanning agents reasonably to improve the thermal stability of leather.
基金financially supported by the Beijing National Laboratory for Molecular Sciencesthe Hebei Province Introduction of Foreign Intelligence Projects(2018)the National Natural Science Foundation of China(No.21676070)。
文摘The rich porous structure,high surface area and surface doping make nitrogen doping mesoporous carbon materials(N-MPC)attractive in various areas,including adsorption separation,electrochemical energy storage,catalysis and other fields.Herein,polyvinylpyrrolidone(PVP)is introduced into the polymerization process of assembly of phenol/formaldehyde(PF)resin by means of hydrogen bonds and electrostatic interaction,which not only leads to the formation of uniform mesopores,but also leads to the increase of specific surface area and nitrogen doping.The amount of PVP and annealing temperature has no obvious effect on morphology,but subsequently has effect on the specific surface area and pore volume.When appropriate PVP dosage and annealing temperature are adopted,the obtained N-MPC shows abundant mesoporous,high surface area and suitable nitrogen doping.As electrode materials in supercapacitor,the N-MPC shows good performance with high capacitance good stability and rate performance,presenting its excellent promising in energy storage.