期刊文献+
共找到58篇文章
< 1 2 3 >
每页显示 20 50 100
Phishing Attacks Detection Using EnsembleMachine Learning Algorithms
1
作者 Nisreen Innab Ahmed Abdelgader Fadol Osman +4 位作者 Mohammed Awad Mohammed Ataelfadiel Marwan Abu-Zanona Bassam Mohammad Elzaghmouri Farah H.Zawaideh Mouiad Fadeil Alawneh 《Computers, Materials & Continua》 SCIE EI 2024年第7期1325-1345,共21页
Phishing,an Internet fraudwhere individuals are deceived into revealing critical personal and account information,poses a significant risk to both consumers and web-based institutions.Data indicates a persistent rise ... Phishing,an Internet fraudwhere individuals are deceived into revealing critical personal and account information,poses a significant risk to both consumers and web-based institutions.Data indicates a persistent rise in phishing attacks.Moreover,these fraudulent schemes are progressively becoming more intricate,thereby rendering them more challenging to identify.Hence,it is imperative to utilize sophisticated algorithms to address this issue.Machine learning is a highly effective approach for identifying and uncovering these harmful behaviors.Machine learning(ML)approaches can identify common characteristics in most phishing assaults.In this paper,we propose an ensemble approach and compare it with six machine learning techniques to determine the type of website and whether it is normal or not based on two phishing datasets.After that,we used the normalization technique on the dataset to transform the range of all the features into the same range.The findings of this paper for all algorithms are as follows in the first dataset based on accuracy,precision,recall,and F1-score,respectively:Decision Tree(DT)(0.964,0.961,0.976,0.968),Random Forest(RF)(0.970,0.964,0.984,0.974),Gradient Boosting(GB)(0.960,0.959,0.971,0.965),XGBoost(XGB)(0.973,0.976,0.976,0.976),AdaBoost(0.934,0.934,0.950,0.942),Multi Layer Perceptron(MLP)(0.970,0.971,0.976,0.974)and Voting(0.978,0.975,0.987,0.981).So,the Voting classifier gave the best results.While in the second dataset,all the algorithms gave the same results in four evaluation metrics,which indicates that each of them can effectively accomplish the prediction process.Also,this approach outperformed the previous work in detecting phishing websites with high accuracy,a lower false negative rate,a shorter prediction time,and a lower false positive rate. 展开更多
关键词 Social engineering ATTACKS phishing attacks machine learning SECURITY artificial intelligence
下载PDF
Comparative Analysis of Machine Learning Algorithms for Email Phishing Detection Using TF-IDF, Word2Vec, and BERT
2
作者 Arar Al Tawil Laiali Almazaydeh +3 位作者 Doaa Qawasmeh Baraah Qawasmeh Mohammad Alshinwan Khaled Elleithy 《Computers, Materials & Continua》 SCIE EI 2024年第11期3395-3412,共18页
Cybercriminals often use fraudulent emails and fictitious email accounts to deceive individuals into disclosing confidential information,a practice known as phishing.This study utilizes three distinct methodologies,Te... Cybercriminals often use fraudulent emails and fictitious email accounts to deceive individuals into disclosing confidential information,a practice known as phishing.This study utilizes three distinct methodologies,Term Frequency-Inverse Document Frequency,Word2Vec,and Bidirectional Encoder Representations from Transform-ers,to evaluate the effectiveness of various machine learning algorithms in detecting phishing attacks.The study uses feature extraction methods to assess the performance of Logistic Regression,Decision Tree,Random Forest,and Multilayer Perceptron algorithms.The best results for each classifier using Term Frequency-Inverse Document Frequency were Multilayer Perceptron(Precision:0.98,Recall:0.98,F1-score:0.98,Accuracy:0.98).Word2Vec’s best results were Multilayer Perceptron(Precision:0.98,Recall:0.98,F1-score:0.98,Accuracy:0.98).The highest performance was achieved using the Bidirectional Encoder Representations from the Transformers model,with Precision,Recall,F1-score,and Accuracy all reaching 0.99.This study highlights how advanced pre-trained models,such as Bidirectional Encoder Representations from Transformers,can significantly enhance the accuracy and reliability of fraud detection systems. 展开更多
关键词 ATTACKS email phishing machine learning security representations from transformers(BERT) text classifeir natural language processing(NLP)
下载PDF
Optimized Phishing Detection with Recurrent Neural Network and Whale Optimizer Algorithm
3
作者 Brij Bhooshan Gupta Akshat Gaurav +3 位作者 Razaz Waheeb Attar Varsha Arya Ahmed Alhomoud Kwok Tai Chui 《Computers, Materials & Continua》 SCIE EI 2024年第9期4895-4916,共22页
Phishing attacks present a persistent and evolving threat in the cybersecurity land-scape,necessitating the development of more sophisticated detection methods.Traditional machine learning approaches to phishing detec... Phishing attacks present a persistent and evolving threat in the cybersecurity land-scape,necessitating the development of more sophisticated detection methods.Traditional machine learning approaches to phishing detection have relied heavily on feature engineering and have often fallen short in adapting to the dynamically changing patterns of phishingUniformResource Locator(URLs).Addressing these challenge,we introduce a framework that integrates the sequential data processing strengths of a Recurrent Neural Network(RNN)with the hyperparameter optimization prowess of theWhale Optimization Algorithm(WOA).Ourmodel capitalizes on an extensive Kaggle dataset,featuring over 11,000 URLs,each delineated by 30 attributes.The WOA’s hyperparameter optimization enhances the RNN’s performance,evidenced by a meticulous validation process.The results,encapsulated in precision,recall,and F1-score metrics,surpass baseline models,achieving an overall accuracy of 92%.This study not only demonstrates the RNN’s proficiency in learning complex patterns but also underscores the WOA’s effectiveness in refining machine learning models for the critical task of phishing detection. 展开更多
关键词 phishing detection Recurrent Neural Network(RNN) Whale Optimization Algorithm(WOA) CYBERSECURITY machine learning optimization
下载PDF
Machine Learning Techniques for Detecting Phishing URL Attacks 被引量:1
4
作者 Diana T.Mosa Mahmoud Y.Shams +2 位作者 Amr AAbohany El-Sayed M.El-kenawy M.Thabet 《Computers, Materials & Continua》 SCIE EI 2023年第4期1271-1290,共20页
Cyber Attacks are critical and destructive to all industry sectors.They affect social engineering by allowing unapproved access to a Personal Computer(PC)that breaks the corrupted system and threatens humans.The defen... Cyber Attacks are critical and destructive to all industry sectors.They affect social engineering by allowing unapproved access to a Personal Computer(PC)that breaks the corrupted system and threatens humans.The defense of security requires understanding the nature of Cyber Attacks,so prevention becomes easy and accurate by acquiring sufficient knowledge about various features of Cyber Attacks.Cyber-Security proposes appropriate actions that can handle and block attacks.A phishing attack is one of the cybercrimes in which users follow a link to illegal websites that will persuade them to divulge their private information.One of the online security challenges is the enormous number of daily transactions done via phishing sites.As Cyber-Security have a priority for all organizations,Cyber-Security risks are considered part of an organization’s risk management process.This paper presents a survey of different modern machine-learning approaches that handle phishing problems and detect with high-quality accuracy different phishing attacks.A dataset consisting of more than 11000 websites from the Kaggle dataset was utilized and studying the effect of 30 website features and the resulting class label indicating whether or not it is a phishing website(1 or−1).Furthermore,we determined the confusion matrices of Machine Learning models:Neural Networks(NN),Na飗e Bayes,and Adaboost,and the results indicated that the accuracies achieved were 90.23%,92.97%,and 95.43%,respectively. 展开更多
关键词 Cyber security phishing attack URL phishing online social networks machine learning
下载PDF
Empirical Analysis of Neural Networks-Based Models for Phishing Website Classification Using Diverse Datasets
5
作者 Shoaib Khan Bilal Khan +2 位作者 Saifullah Jan Subhan Ullah Aiman 《Journal of Cyber Security》 2023年第1期47-66,共20页
Phishing attacks pose a significant security threat by masquerading as trustworthy entities to steal sensitive information,a problem that persists despite user awareness.This study addresses the pressing issue of phis... Phishing attacks pose a significant security threat by masquerading as trustworthy entities to steal sensitive information,a problem that persists despite user awareness.This study addresses the pressing issue of phishing attacks on websites and assesses the performance of three prominent Machine Learning(ML)models—Artificial Neural Networks(ANN),Convolutional Neural Networks(CNN),and Long Short-Term Memory(LSTM)—utilizing authentic datasets sourced from Kaggle and Mendeley repositories.Extensive experimentation and analysis reveal that the CNN model achieves a better accuracy of 98%.On the other hand,LSTM shows the lowest accuracy of 96%.These findings underscore the potential of ML techniques in enhancing phishing detection systems and bolstering cybersecurity measures against evolving phishing tactics,offering a promising avenue for safeguarding sensitive information and online security. 展开更多
关键词 Artificial neural networks phishing websites network security machine learning phishing datasets CLASSIFICATION
下载PDF
Intelligent Deep Learning Based Cybersecurity Phishing Email Detection and Classification 被引量:1
6
作者 R.Brindha S.Nandagopal +3 位作者 H.Azath V.Sathana Gyanendra Prasad Joshi Sung Won Kim 《Computers, Materials & Continua》 SCIE EI 2023年第3期5901-5914,共14页
Phishing is a type of cybercrime in which cyber-attackers pose themselves as authorized persons or entities and hack the victims’sensitive data.E-mails,instant messages and phone calls are some of the common modes us... Phishing is a type of cybercrime in which cyber-attackers pose themselves as authorized persons or entities and hack the victims’sensitive data.E-mails,instant messages and phone calls are some of the common modes used in cyberattacks.Though the security models are continuously upgraded to prevent cyberattacks,hackers find innovative ways to target the victims.In this background,there is a drastic increase observed in the number of phishing emails sent to potential targets.This scenario necessitates the importance of designing an effective classification model.Though numerous conventional models are available in the literature for proficient classification of phishing emails,the Machine Learning(ML)techniques and the Deep Learning(DL)models have been employed in the literature.The current study presents an Intelligent Cuckoo Search(CS)Optimization Algorithm with a Deep Learning-based Phishing Email Detection and Classification(ICSOA-DLPEC)model.The aim of the proposed ICSOA-DLPEC model is to effectually distinguish the emails as either legitimate or phishing ones.At the initial stage,the pre-processing is performed through three stages such as email cleaning,tokenization and stop-word elimination.Then,the N-gram approach is;moreover,the CS algorithm is applied to extract the useful feature vectors.Moreover,the CS algorithm is employed with the Gated Recurrent Unit(GRU)model to detect and classify phishing emails.Furthermore,the CS algorithm is used to fine-tune the parameters involved in the GRU model.The performance of the proposed ICSOA-DLPEC model was experimentally validated using a benchmark dataset,and the results were assessed under several dimensions.Extensive comparative studies were conducted,and the results confirmed the superior performance of the proposed ICSOA-DLPEC model over other existing approaches.The proposed model achieved a maximum accuracy of 99.72%. 展开更多
关键词 phishing email data classification natural language processing deep learning CYBERSECURITY
下载PDF
Assessing Secure OpenID-Based EAAA Protocol to Prevent MITM and Phishing Attacks in Web Apps
7
作者 Muhammad Bilal Sandile C.Showngwe +1 位作者 Abid Bashir Yazeed Y.Ghadi 《Computers, Materials & Continua》 SCIE EI 2023年第6期4713-4733,共21页
To secure web applications from Man-In-The-Middle(MITM)and phishing attacks is a challenging task nowadays.For this purpose,authen-tication protocol plays a vital role in web communication which securely transfers dat... To secure web applications from Man-In-The-Middle(MITM)and phishing attacks is a challenging task nowadays.For this purpose,authen-tication protocol plays a vital role in web communication which securely transfers data from one party to another.This authentication works via OpenID,Kerberos,password authentication protocols,etc.However,there are still some limitations present in the reported security protocols.In this paper,the presented anticipated strategy secures both Web-based attacks by leveraging encoded emails and a novel password form pattern method.The proposed OpenID-based encrypted Email’s Authentication,Authorization,and Accounting(EAAA)protocol ensure security by relying on the email authenticity and a Special Secret Encrypted Alphanumeric String(SSEAS).This string is deployed on both the relying party and the email server,which is unique and trustworthy.The first authentication,OpenID Uniform Resource Locator(URL)identity,is performed on the identity provider side.A second authentication is carried out by the hidden Email’s server side and receives a third authentication link.This Email’s third SSEAS authentication link manages on the relying party(RP).Compared to existing cryptographic single sign-on protocols,the EAAA protocol ensures that an OpenID URL’s identity is secured from MITM and phishing attacks.This study manages two attacks such as MITM and phishing attacks and gives 339 ms response time which is higher than the already reported methods,such as Single Sign-On(SSO)and OpenID.The experimental sites were examined by 72 information technology(IT)specialists,who found that 88.89%of respondents successfully validated the user authorization provided to them via Email.The proposed EAAA protocol minimizes the higher-level risk of MITM and phishing attacks in an OpenID-based atmosphere. 展开更多
关键词 SECURE user authentication SSO OPENID phishing attack MITM attack
下载PDF
Modelling an Efficient URL Phishing Detection Approach Based on a Dense Network Model
8
作者 A.Aldo Tenis R.Santhosh 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期2625-2641,共17页
The social engineering cyber-attack is where culprits mislead the users by getting the login details which provides the information to the evil server called phishing.The deep learning approaches and the machine learn... The social engineering cyber-attack is where culprits mislead the users by getting the login details which provides the information to the evil server called phishing.The deep learning approaches and the machine learning are compared in the proposed system for presenting the methodology that can detect phishing websites via Uniform Resource Locator(URLs)analysis.The legal class is composed of the home pages with no inclusion of login forms in most of the present modern solutions,which deals with the detection of phishing.Contrarily,the URLs in both classes from the login page due,considering the representation of a real case scenario and the demonstration for obtaining the rate of false-positive with the existing approaches during the legal login pages provides the test having URLs.In addition,some model reduces the accuracy rather than training the base model and testing the latest URLs.In addition,a feature analysis is performed on the present phishing domains to identify various approaches to using the phishers in the campaign.A new dataset called the MUPD dataset is used for evaluation.Lastly,a prediction model,the Dense forward-backwards Long Short Term Memory(LSTM)model(d−FBLSTM),is presented for combining the forward and backward propagation of LSMT to obtain the accuracy of 98.5%on the initiated login URL dataset. 展开更多
关键词 Cyber-attack URL phishing attack attention model prediction accuracy
下载PDF
Optimal Deep Belief Network Enabled Cybersecurity Phishing Email Classification
9
作者 Ashit Kumar Dutta T.Meyyappan +4 位作者 Basit Qureshi Majed Alsanea Anas Waleed Abulfaraj Manal M.Al Faraj Abdul Rahaman Wahab Sait 《Computer Systems Science & Engineering》 SCIE EI 2023年第3期2701-2713,共13页
Recently,developments of Internet and cloud technologies have resulted in a considerable rise in utilization of online media for day to day lives.It results in illegal access to users’private data and compromises it.... Recently,developments of Internet and cloud technologies have resulted in a considerable rise in utilization of online media for day to day lives.It results in illegal access to users’private data and compromises it.Phishing is a popular attack which tricked the user into accessing malicious data and gaining the data.Proper identification of phishing emails can be treated as an essential process in the domain of cybersecurity.This article focuses on the design of bio-geography based optimization with deep learning for Phishing Email detection and classification(BBODL-PEDC)model.The major intention of the BBODL-PEDC model is to distinguish emails between legitimate and phishing.The BBODL-PEDC model initially performs data pre-processing in three levels namely email cleaning,tokenization,and stop word elimination.Besides,TF-IDF model is applied for the extraction of useful feature vectors.Moreover,optimal deep belief network(DBN)model is used for the email classification and its efficacy can be boosted by the BBO based hyperparameter tuning process.The performance validation of the BBODL-PEDC model can be performed using benchmark dataset and the results are assessed under several dimensions.Extensive comparative studies reported the superior outcomes of the BBODL-PEDC model over the recent approaches. 展开更多
关键词 CYBERSECURITY phishing email data classification deep learning biogeography based optimization hyperparameter tuning
下载PDF
Detection of Phishing in Internet-of-Things Using Hybrid Deep Belief Network
10
作者 S.Ashwini S.Magesh Kumar 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期3043-3056,共14页
Increase in the use of internet of things owned devices is one of the reasonsforincreasednetworktraffic.Whileconnectingthesmartdeviceswith publicly available network many kinds of phishing attacks are able to enter in... Increase in the use of internet of things owned devices is one of the reasonsforincreasednetworktraffic.Whileconnectingthesmartdeviceswith publicly available network many kinds of phishing attacks are able to enter into the mobile devices and corrupt the existing system.The Phishing is the slow and resilient attack stacking techniques probe the users.The proposed model is focused on detecting phishing attacks in internet of things enabled devices through a robust algorithm called Novel Watch and Trap Algorithm(NWAT).Though Predictive mapping,Predictive Validation and Predictive analysis mechanism is developed.For the test purpose Canadian Institute of cyber security(CIC)dataset is used for creating a robust prediction model.This attack generates a resilience corruption works that slowly gathers the credential information from the mobiles.The proposed Predictive analysis model(PAM)enabled NWAT algorithm is used to predict the phishing probes in the form of suspicious process happening in the IoT networks.The prediction system considers the peer-to-peer communication window open for the established communication,the suspicious process and its pattern is identified by the new approach.The proposed model is validated by finding thepredictionaccuracy,Precision,recallsF1score,errorrate,Mathew’sCorre-lationCoefficient(MCC)andBalancedDetectionRate(BDR).Thepresented approach is comparatively analyzed with the state-of-the-art approach of existing system related to various types of Phishing probes. 展开更多
关键词 Cyber security internet of things phishing attacks fault-tolerant devices smart devices cyber security attacks
下载PDF
Phishing Website URL’s Detection Using NLP and Machine Learning Techniques
11
作者 Dinesh Kalla Sivaraju Kuraku 《Journal on Artificial Intelligence》 2023年第1期145-162,共18页
Phishing websites present a severe cybersecurity risk since they can lead to financial losses,data breaches,and user privacy violations.This study uses machine learning approaches to solve the problem of phishing webs... Phishing websites present a severe cybersecurity risk since they can lead to financial losses,data breaches,and user privacy violations.This study uses machine learning approaches to solve the problem of phishing website detection.Using artificial intelligence,the project aims to provide efficient techniques for locating and thwarting these dangerous websites.The study goals were attained by performing a thorough literature analysis to investigate several models and methods often used in phishing website identification.Logistic Regression,K-Nearest Neighbors,Decision Trees,Random Forests,Support Vector Classifiers,Linear Support Vector Classifiers,and Naive Bayes were all used in the inquiry.This research covers the benefits and drawbacks of several Machine Learning approaches,illuminating how well-suited each is to overcome the difficulties in locating and countering phishing website predictions.The insights gained from this literature review guide the selection and implementation of appropriate models and methods in future research and real-world applications related to phishing detections.The study evaluates and compares accuracy,precision and recalls of several machine learning models in detecting phishing website URL’s detection. 展开更多
关键词 CYBERSECURITY artificial intelligence machine learning NLP phishing detection spam detection phinshing website URLs
下载PDF
Detecting Phishing Using a Multi-Layered Social Engineering Framework
12
作者 Kofi Sarpong Adu-Manu Richard Kwasi Ahiable 《Journal of Cyber Security》 2023年第1期13-32,共20页
As businesses develop and expand with a significant volume of data,data protection and privacy become increasingly important.Research has shown a tremendous increase in phishing activities during and after COVID-19.Th... As businesses develop and expand with a significant volume of data,data protection and privacy become increasingly important.Research has shown a tremendous increase in phishing activities during and after COVID-19.This research aimed to improve the existing approaches to detecting phishing activities on the internet.We designed a multi-layered phish detection algorithm to detect and prevent phishing applications on the internet using URLs.In the algorithm,we considered technical dimensions of phishing attack prevention and mitigation on the internet.In our approach,we merge,Phishtank,Blacklist,Blocklist,and Whitelist to form our framework.A web application system and browser extension were developed to implement the algorithm.The multi-layer phish detector evaluated ten thousandURLs gathered randomly from the internet(five thousand phishing and five thousand legitimate URLs).The system was estimated to detect levels of accuracy,true-positive and false-positive values.The system level accuracy was recorded to be 98.16%.Approximately 49.6%of the websites were detected as illegitimate,whilst 49.8%were seen as legitimate. 展开更多
关键词 phishing social engineering multi-layer framework data protection PRIVACY
下载PDF
Phishing行为及网络金融机构应对策略的博弈分析(英文) 被引量:1
13
作者 刘业政 丁正平 袁雨飞 《电子科技大学学报》 EI CAS CSCD 北大核心 2009年第S1期37-44,共8页
Phishing是近年来新出现的一种网络欺诈,是指欺诈者(Phisher)通过大量发送欺骗性垃圾邮件或采用其他的方式,意图引诱疏于防范的网络用户登陆假冒的知名站点,从而窃取个人敏感信息的一种攻击方式。这种欺诈行为给网络用户尤其是网络金融... Phishing是近年来新出现的一种网络欺诈,是指欺诈者(Phisher)通过大量发送欺骗性垃圾邮件或采用其他的方式,意图引诱疏于防范的网络用户登陆假冒的知名站点,从而窃取个人敏感信息的一种攻击方式。这种欺诈行为给网络用户尤其是网络金融机构的用户带来了大量的损失,也给网络金融机构带来了危害。该文在分析Phisher和网络金融机构的损益函数的基础上,建立了它们之间的二阶段动态博弈模型,并通过对纳什均衡的分析,求出了网络金融机构面对Phishing欺诈的最优策略。 展开更多
关键词 博弈 网络金融机构 phishing
下载PDF
Architecture and algorithm for web phishing detection
14
作者 曹玖新 王田峰 +1 位作者 时莉莉 毛波 《Journal of Southeast University(English Edition)》 EI CAS 2010年第1期43-47,共5页
A phishing detection system, which comprises client-side filtering plug-in, analysis center and protected sites, is proposed. An image-based similarity detection algorithm is conceived to calculate the similarity of t... A phishing detection system, which comprises client-side filtering plug-in, analysis center and protected sites, is proposed. An image-based similarity detection algorithm is conceived to calculate the similarity of two web pages. The web pages are first converted into images, and then divided into sub-images with iterated dividing and shrinking. After that, the attributes of sub-images including color histograms, gray histograms and size parameters are computed to construct the attributed relational graph(ARG)of each page. In order to match two ARGs, the inner earth mover's distances(EMD)between every two nodes coming from each ARG respectively are first computed, and then the similarity of web pages by the outer EMD between two ARGs is worked out to detect phishing web pages. The experimental results show that the proposed architecture and algorithm has good robustness along with scalability, and can effectively detect phishing. 展开更多
关键词 phishing detection image similarity attributed relational graph inner EMD outer EMD
下载PDF
Phishing Techniques in Mobile Devices
15
作者 Belal Amro 《Journal of Computer and Communications》 2018年第2期27-35,共9页
The rapid evolution in mobile devices and communication technology has increased the number of mobile device users dramatically. The mobile device has replaced many other devices and is used to perform many tasks rang... The rapid evolution in mobile devices and communication technology has increased the number of mobile device users dramatically. The mobile device has replaced many other devices and is used to perform many tasks ranging from establishing a phone call to performing critical and sensitive tasks like money payments. Since the mobile device is accompanying a person most of his time, it is highly probably that it includes personal and sensitive data for that person. The increased use of mobile devices in daily life made mobile systems an excellent target for attacks. One of the most important attacks is phishing attack in which an attacker tries to get the credential of the victim and impersonate him. In this paper, analysis of different types of phishing attacks on mobile devices is provided. Mitigation techniques—anti-phishing techniques—are also analyzed. Assessment of each technique and a summary of its advantages and disadvantages is provided. At the end, important steps to guard against phishing attacks are provided. The aim of the work is to put phishing attacks on mobile systems in light, and to make people aware of these attacks and how to avoid them. 展开更多
关键词 MALWARE phishing ANTI-phishing MOBILE Device MOBILE Application SECURITY PRIVACY
下载PDF
PHISHING WEB IMAGE SEGMENTATION BASED ON IMPROVING SPECTRAL CLUSTERING 被引量:1
16
作者 Li Yuancheng Zhao Liujun Jiao Runhai 《Journal of Electronics(China)》 2011年第1期101-107,共7页
This paper proposes a novel phishing web image segmentation algorithm which based on improving spectral clustering.Firstly,we construct a set of points which are composed of spatial location pixels and gray levels fro... This paper proposes a novel phishing web image segmentation algorithm which based on improving spectral clustering.Firstly,we construct a set of points which are composed of spatial location pixels and gray levels from a given image.Secondly,the data is clustered in spectral space of the similar matrix of the set points,in order to avoid the drawbacks of K-means algorithm in the conventional spectral clustering method that is sensitive to initial clustering centroids and convergence to local optimal solution,we introduce the clone operator,Cauthy mutation to enlarge the scale of clustering centers,quantum-inspired evolutionary algorithm to find the global optimal clustering centroids.Compared with phishing web image segmentation based on K-means,experimental results show that the segmentation performance of our method gains much improvement.Moreover,our method can convergence to global optimal solution and is better in accuracy of phishing web segmentation. 展开更多
关键词 Spectral clustering algorithm CLONAL MUTATION Quantum-inspired Evolutionary Algorithm(QEA) phishing web image segmentation
下载PDF
Phishing Websites Detection by Using Optimized Stacking Ensemble Model 被引量:1
17
作者 Zeyad Ghaleb Al-Mekhlafi Badiea Abdulkarem Mohammed +5 位作者 Mohammed Al-Sarem Faisal Saeed Tawfik Al-Hadhrami Mohammad T.Alshammari Abdulrahman Alreshidi Talal Sarheed Alshammari 《Computer Systems Science & Engineering》 SCIE EI 2022年第4期109-125,共17页
Phishing attacks are security attacks that do not affect only individuals’or organizations’websites but may affect Internet of Things(IoT)devices and net-works.IoT environment is an exposed environment for such atta... Phishing attacks are security attacks that do not affect only individuals’or organizations’websites but may affect Internet of Things(IoT)devices and net-works.IoT environment is an exposed environment for such attacks.Attackers may use thingbots software for the dispersal of hidden junk emails that are not noticed by users.Machine and deep learning and other methods were used to design detection methods for these attacks.However,there is still a need to enhance detection accuracy.Optimization of an ensemble classification method for phishing website(PW)detection is proposed in this study.A Genetic Algo-rithm(GA)was used for the proposed method optimization by tuning several ensemble Machine Learning(ML)methods parameters,including Random Forest(RF),AdaBoost(AB),XGBoost(XGB),Bagging(BA),GradientBoost(GB),and LightGBM(LGBM).These were accomplished by ranking the optimized classi-fiers to pick out the best classifiers as a base for the proposed method.A PW data-set that is made up of 4898 PWs and 6157 legitimate websites(LWs)was used for this study's experiments.As a result,detection accuracy was enhanced and reached 97.16 percent. 展开更多
关键词 phishing websites ensemble classifiers optimization methods genetic algorithm
下载PDF
Phishing攻击技术研究及防范对策
18
作者 刘科 卢涵宇 王华军 《电脑知识与技术》 2010年第6期4399-4400,共2页
为了防止攻击者通过网络钓鱼(phishing)这种新型的网络攻击手段窃取用户的私密信息。论文从网络攻击的角度,指出了phishing攻击的危害性,分析了Phishing攻击的含义和方式,然后针对钓鱼攻击本身的特点,提出了对phishing攻击采取的技术... 为了防止攻击者通过网络钓鱼(phishing)这种新型的网络攻击手段窃取用户的私密信息。论文从网络攻击的角度,指出了phishing攻击的危害性,分析了Phishing攻击的含义和方式,然后针对钓鱼攻击本身的特点,提出了对phishing攻击采取的技术和非技术的防范对策。 展开更多
关键词 phishing攻击 网络安全 网络诈骗 防范
下载PDF
Hunger Search Optimization with Hybrid Deep Learning Enabled Phishing Detection and Classification Model
19
作者 Hadil Shaiba Jaber S.Alzahrani +3 位作者 Majdy M.Eltahir Radwa Marzouk Heba Mohsen Manar Ahmed Hamza 《Computers, Materials & Continua》 SCIE EI 2022年第12期6425-6441,共17页
Phishing is one of the simplest ways in cybercrime to hack the reliable data of users such as passwords,account identifiers,bank details,etc.In general,these kinds of cyberattacks are made at users through phone calls... Phishing is one of the simplest ways in cybercrime to hack the reliable data of users such as passwords,account identifiers,bank details,etc.In general,these kinds of cyberattacks are made at users through phone calls,emails,or instant messages.The anti-phishing techniques,currently under use,aremainly based on source code features that need to scrape the webpage content.In third party services,these techniques check the classification procedure of phishing Uniform Resource Locators(URLs).Even thoughMachine Learning(ML)techniques have been lately utilized in the identification of phishing,they still need to undergo feature engineering since the techniques are not well-versed in identifying phishing offenses.The tremendous growth and evolution of Deep Learning(DL)techniques paved the way for increasing the accuracy of classification process.In this background,the current research article presents a Hunger Search Optimization with Hybrid Deep Learning enabled Phishing Detection and Classification(HSOHDL-PDC)model.The presented HSOHDL-PDC model focuses on effective recognition and classification of phishing based on website URLs.In addition,SOHDL-PDC model uses character-level embedding instead of word-level embedding since the URLs generally utilize words with no importance.Moreover,a hybrid Convolutional Neural Network-Long Short Term Memory(HCNN-LSTM)technique is also applied for identification and classification of phishing.The hyperparameters involved in HCNN-LSTM model are optimized with the help of HSO algorithm which in turn produced improved outcomes.The performance of the proposed HSOHDL-PDC model was validated using different datasets and the outcomes confirmed the supremacy of the proposed model over other recent approaches. 展开更多
关键词 Uniform resource locators phishing cyberattacks machine learning deep learning hyperparameter optimization
下载PDF
URL Phishing Detection Using Particle Swarm Optimization and Data Mining
20
作者 Saeed M.Alshahrani Nayyar Ahmed Khan +1 位作者 Jameel Almalki Waleed Al Shehri 《Computers, Materials & Continua》 SCIE EI 2022年第12期5625-5640,共16页
The continuous destruction and frauds prevailing due to phishing URLs make it an indispensable area for research.Various techniques are adopted in the detection process,including neural networks,machine learning,or hy... The continuous destruction and frauds prevailing due to phishing URLs make it an indispensable area for research.Various techniques are adopted in the detection process,including neural networks,machine learning,or hybrid techniques.A novel detection model is proposed that uses data mining with the Particle Swarm Optimization technique(PSO)to increase and empower the method of detecting phishing URLs.Feature selection based on various techniques to identify the phishing candidates from the URL is conducted.In this approach,the features mined from the URL are extracted using data mining rules.The features are selected on the basis of URL structure.The classification of these features identified by the data mining rules is done using PSO techniques.The selection of features with PSO optimization makes it possible to identify phishing URLs.Using a large number of rule identifiers,the true positive rate for the identification of phishing URLs is maximized in this approach.The experiments show that feature selection using data mining and particle swarm optimization helps tremendously identify the phishing URLs based on the structure of the URL itself.Moreover,it can minimize processing time for identifying the phishing website instead.So,the approach can be beneficial to identify suchURLs over the existing contemporary detecting models proposed before. 展开更多
关键词 phishing particle swarm optimization feature selection data mining classification cloud application
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部